skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 14, 2026

Title: From Coastal Retreat to Seaward Growth: Emergent Behaviors From Paired Community Beach Nourishment Choices
Coastal communities often address shoreline erosion through beach nourishment, adding externally sourced sand to widen beaches for recreation and property protection. While nourishment enhances beachfront property values, the need for periodic maintenance creates interdependencies where the actions of neighboring communities affect local shoreline dynamics. Using a coupled model of two neighboring communities, we examine the interplay between community nourishment decisions and the redistribution of nourishment sand. We find that the value a community places on wider beaches not only influences their propensity to nourish, but also their and their neighbors' nourishment efficiency and net benefits. Communities that nourish more frequently tend to have lower nourishment efficiency, as sand is redistributed alongshore, benefiting less‐active neighbors at their expense. A 20‐year New Jersey case study confirms that communities that nourish more have lower nourishment efficiencies, including instances where less wealthy communities nourish significantly more, enabling wealthier neighbors to enjoy higher efficiencies—suggesting that such dynamics may already be shaping real‐world coastal outcomes. In future scenarios, we simulate the effects of rising sand costs and accelerated erosion due to sea‐level rise under coordinated and non‐coordinated planning methods, finding that less wealthy communities experience a higher risk of beachfront property loss under non‐coordination, exacerbating disparities in coastal management. These findings underscore the importance of inter‐community cooperation in optimizing economic and environmental outcomes in beach nourishment strategies.  more » « less
Award ID(s):
2103754
PAR ID:
10650850
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Geophysical Union (AGU)
Date Published:
Journal Name:
Earth's Future
Volume:
13
Issue:
8
ISSN:
2328-4277
Page Range / eLocation ID:
e2025EF006352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wang, Ping; Royer, Elizabeth; Rosati, Julie D. (Ed.)
    Three cycles of beach nourishment at two barrier islands: Sand Key and Treasure Island, were studied over 17 years. Seventy-four and 17 beach profiles spaced ∼300 m apart were surveyed bimonthly to quarterly on Sand Key and Treasure Island, respectively. Six beach sections were distinguished based on beach dynamics, including 2 erosional hotspots, 1 gap in the nourishment and 3 typical erosive beaches. At most locations, the shoreline (defined at +1 m contour) returned to a similar location at the end of each cycle, indicating the nourishment successfully maintained the target beach width. The Treasure Island erosion hotspot experienced increased beach loss over time, suggesting that the current nourishment design may not be adequate. The gap in the nourishment did not experience significant sand gain on the dry beach. A mechanism to impound sand on the dry beach is necessary. The current nourishment successfully compensated the sand deficit. The mechanism causing sand deficit was not eliminated at all the sites, suggesting that the current nourishment design serves as a long-term maintenance strategy. 
    more » « less
  2. Relative sea-level (RSL) rise associated with decreased fluvial sediment discharge and increased hurricane activity have contributed to the high rate of shoreline retreat and threatened coastal ecosystems in Port Fourchon, Louisiana, USA. This study, based on QuickBird/drone images (2004–2019) and LIDAR data (1998–2013), analyzed the impacts of shoreline dynamics on mangroves (Avicennia germinans) and marshes before and after the initiation of a beach nourishment project in 2013. The coastal barrier and dune crest migrated landward between 1998 and 2013. Meanwhile, the dune crest height increased between 1998 and 2001, then decreased in 2013, probably due to hurricane impacts. The total sediment volume along this sandy coastal barrier presented an overall trend of decline in the 1998–2013 period, resulting in a wetlands loss of ~15.6 ha along 4 km of coastline. This has led to a landward sand migration onto muddy tidal flats occupied by Avicennia germinans (1.08 ha) and Spartina (14.52 ha). However, the beach nourishment project resulted in the advancement of the beach barrier from Nov/2012 to Jan/2015, followed by a relatively stable period between Jan/2015 and Mar/2019. Additionally, both the dune crest height and sediment volume increased between 2013 and 2019. This set of factors favored the establishment and expansion of mangroves (3.2 ha) and saltmarshes (25.4 ha) along the backbarrier environments after 2013, allowing the tidal flats to keep pace with the RSL rise. However, waves and currents caused shoreline erosion following the beach nourishment project between Oct/2017 and Nov/2019, threatening wetlands by resuming the long-term process of shoreline retreat. 
    more » « less
  3. Abstract Erosion along high-latitude coasts has been accelerating in recent decades, resulting in land loss and infrastructure damage, threatening the wellbeing of local communities, and forcing undesired community relocations. This review paper evaluates the state of practice of current coastal stabilization measures across several coastal communities in northern high latitudes. After considering global practices and those in northern high latitude and arctic settings, this paper then explores new and potential coastal stabilization measures to address erosion specific to northern high-latitude coastlines. The challenges in constructing the current erosion control measures and the cost of the measures over the last four decades in northern high-latitude regions are presented through case histories. The synthesis shows that among the current erosion controls being used at high latitudes, revetments built with rocks have the least reported failures and are the most common measures applied along northern high-latitude coastlines including permafrost coasts, while riprap is the most common material used. For seawalls, bulkheads, and groin systems, reported failures are common and mostly associated with displacement, deflection, settlement, vandalism, and material ruptures. Revetments have been successfully implemented at sites with a wide range of mean annual erosion rates (0.3–2.4 m/year) and episodic erosion (6.0–22.9 m) due to the low costs and easy construction, inspection, and decommissioning. No successful case history has been reported for the non-engineered expedient measures that are constructed in the event of an emergency, except for the expedient vegetation measure using root-wads and willows. Soft erosion prevention measures, which include both beach nourishment and dynamically stable beaches, have been considered in this review. The effectiveness of beach nourishment in Utqiaġvik, Alaska, which is affected by permafrost, is inconclusive. Dynamically stable beaches are effective in preventing erosion, and observations show that they experience only minor damages after single storm events. The analysis also shows that more measures have been constructed on a spit (relative to bluffs, islands, barrier islands, and river mouths), which is a landform where many Alaskan coastal communities reside. The emerging erosion control measures that can potentially be adapted to mitigate coastal erosion in high-latitude regions include geosynthetics, static bay beach concept, refrigerating techniques, and biogeochemical applications. However, this review shows that there is a lack of case studies that evaluated the performance of these new measures in high-latitude environments. This paper identifies research gaps so that these emerging measures can be upscaled for full-scale applications on permafrost coasts. 
    more » « less
  4. Abstract Beach erosion due to large storms critically affects coastal vulnerability, but is challenging to monitor and quantify. Attributing erosion to a specific storm requires a reliable counterfactual scenario: hypothetical beach conditions, absent the storm. Calibrating models to construct counterfactuals requires numerous observations that are rarely available. Storm paths are unpredictable, making long‐term instrumentation of specific beaches costly. Optical remote sensing is hampered by persistent cloud cover. We use Sentinel‐1 satellite radar imagery to monitor shoreline changes through clouds and propose regression discontinuity as a strategy to estimate the causal effect of large storms on beach erosion. Applied to 75 beaches across Puerto Rico, the approach detects shoreline changes with a root‐mean‐square error comparable to the resolution of the imagery. Hurricane Maria caused an erosion of 3 to 5 m along its path, up to 40 m at particular beaches. Results reveal strong local disparities that are consistent with simulated nearshore hydrodynamic conditions. 
    more » « less
  5. Beaches and inlets throughout the U.S. have been stabilized for purposes of navigation, erosion mitigation, and economic resilience, commonly leading to changes in shoreline dynamics and downdrift erosion/accretion patterns. The developed beach of Plum Island, Massachusetts is highly dynamic, experiencing regular complex erosion / accretion patterns along much of the shoreline. We analyzed > 100 years of high-water line positions derived from satellite imagery, t-sheets, historical maps, and aerial photography. Unlike most beaches, the river-proximal sections of Plum Island are not uniformly retreating. Rather, the beach undergoes short-term erosion, followed by periods of accretion and return to a long-term mean stable shoreline position. These cycles occur over different time frames and in different segments of the beach, creating an ephemeral erosion ‘hotspot’ lasting as briefly as one year. The highly dynamic and spatially diverse nature of erosion along Plum Island provides insight into the complex nature of coupled inlet-beach dynamics over multiple timescales. 
    more » « less