skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 21, 2026

Title: Defect-Mediated Electrical Conduction and Piezoelectricity in Hydroxyapatite Nanofibers
We report the influence of vacancy point defects on the conductivity and piezoelectricity of hydroxyapatite (HAp) nanofibers. A combination of experimental techniques, including conductive atomic force microscopy, electrostatic force microscopy, and switching spectroscopy piezoresponse force microscopy, along with computational modeling, was employed to elucidate the conduction mechanisms and charge accumulation effects in HAp. Our findings demonstrate that oxygen and calcium vacancy defects play a crucial role in the conduction mechanism of HAp nanofibers, specifically through charge-trapping and de-trapping processes, as well as in charge accumulation and the piezoelectric response. The Poole-Frenkel conduction mechanism was confirmed by fitting experimental current-voltage data to a theoretical model, revealing a dielectric constant consistent with previously reported theoretical values. These insights contribute to a deeper understanding of the role of point defects in the electrical and piezoelectric properties of HAp, which is essential for optimizing its performance in biomedical applications.  more » « less
Award ID(s):
1911372
PAR ID:
10650911
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
129
Issue:
33
ISSN:
1520-6106
Page Range / eLocation ID:
8428-8435
Subject(s) / Keyword(s):
hydroxyapatite piezoelectricity Poole-Frenkel conduction point defects electrostatic force microscopy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surface states that induce depletion regions are commonly believed to control the transport of charged carriers through semiconductor nanowires. However, direct, localized optical, and electrical measurements of ZnO nanowires show that native point defects inside the nanowire bulk and created at metal−semiconductor interfaces are electrically active and play a dominant role electronically, altering the semiconductor doping, the carrier density along the wire length, and the injection of charge into the wire. We used depth-resolved cathodoluminescence spectroscopy to measure the densities of multiple point defects inside ZnO nanowires, substitutional Cu on Zn sites, zinc vacancy, and oxygen vacancy defects, showing that their densities varied strongly both radially and lengthwise for tapered wires. These defect profiles and their variation with wire diameter produce trap-assisted tunneling and acceptor trapping of free carriers, the balance of which determines the low contact resistivity (2.6 × 10−3 Ω·cm−2) ohmic, Schottky (Φ ≥ 0.35 eV) or blocking nature of Pt contacts to a single nano/microwire. We show how these defects can now be manipulated by ion beam methods and nanowire design, opening new avenues to control nanowire charge injection and transport. 
    more » « less
  2. We describe the triboluminescence response of undoped (BaAl2Si2O8, h–BAS) and Eu-doped (h–BAS:Eu) barium hexacelsian powders and show that the triboluminescence behavior is dependent on the formation of barium vacancies. X-ray photoelectron spectroscopy of the h–BAS:Eu powders confirms the presence of Eu3+ and Eu2+ in the compound, leading to the formation of significant vacancy point defects in excess of those found in h–BAS as a result of the charge imbalance caused by the substitution of Eu3+ in Ba2+ sites. From electron paramagnetic resonance measurements and density functional theory (DFT) calculations, we demonstrate that the vacancy defects correspond to singly ionized barium vacancies. DFT-calculated thermodynamic transitions and electronic structure calculations reveal deep energy levels within the compound’s energy band gap, with a strong emission at 3.33 eV correlated to an electron exchange between the conduction band minimum and a barium vacancy center. Time-resolved triboluminescence spectra show that the increased concentration of barium vacancies in h–BAS:Eu enhances the signal by about 75% compared to the signal from h–BAS. These results play an important role in the understanding of fundamental mechanisms behind the triboluminescence response of ceramic materials as well as the role of different types of defects in this process. 
    more » « less
  3. Nonadiabatic molecular dynamics (NA-MD) is a powerful tool to model far-from-equilibrium processes, such as photochemical reactions and charge transport. NA-MD application to condensed phase has drawn tremendous attention recently for development of next-generation energy and optoelectronic materials. Studies of condensed matter allow one to employ efficient computational tools, such as density functional theory (DFT) and classical path approximation (CPA). Still, system size and simulation timescale are strongly limited by costly ab initio calculations of electronic energies, forces, and NA couplings. We resolve the limitations by developing a fully machine learning (ML) approach in which all the above properties are obtained using neural networks based on local descriptors. The ML models correlate the target properties for NA-MD, implemented with DFT and CPA, directly to the system structure. Trained on small systems, the neural networks are applied to large systems and long timescales, extending NA-MD capabilities by orders of magnitude. We demonstrate the approach with dependence of charge trapping and recombination on defect concentration in MoS2. Defects provide the main mechanism of charge losses, resulting in performance degradation. Charge trapping slows with decreasing defect concentration; however, recombination exhibits complex dependence, conditional on whether it occurs between free or trapped charges, and relative concentrations of carriers and defects. Delocalized shallow traps can become localized with increasing temperature, changing trapping and recombination behavior. Completely based on ML, the approach bridges the gap between theoretical models and realistic experimental conditions and enables NA-MD on thousand-atom systems and many nanoseconds. 
    more » « less
  4. Abstract Piezoelectricity in low‐dimensional materials and metal–semiconductor junctions has attracted recent attention. Herein, a 2D in‐plane metal–semiconductor junction made of multilayer 2H and 1T′ phases of molybdenum(IV) telluride (MoTe2) is investigated. Strong piezoelectric response is observed using piezoresponse force microscopy at the 2H–1T′ junction, despite that the multilayers of each individual phase are weakly piezoelectric. The experimental results and density functional theory calculations suggest that the amplified piezoelectric response observed at the junction is due to the charge transfer across the semiconducting and metallic junctions resulting in the formation of dipoles and excess charge density, allowing the engineering of piezoelectric response in atomically thin materials. 
    more » « less
  5. Potassium channels modulate various cellular functions through efficient and selective conduction of K + ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K + ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated by ab initio calculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations. 
    more » « less