SUMMARY Plants are essential for human survival. Over the past three decades, work with the reference plantArabidopsis thalianahas significantly advanced plant biology research. One key event was the sequencing of its genome 25 years ago, which fostered many subsequent research technologies and datasets. Arabidopsis has been instrumental in elucidating plant‐specific aspects of biology, developing research tools, and translating findings to crop improvement. It not only serves as a model for understanding plant biology and but also biology in other fields, with discoveries in Arabidopsis also having led to applications in human health, including insights into immunity, protein degradation, and circadian rhythms. Arabidopsis research has also fostered the development of tools useful for the wider biological research community, such as optogenetic systems and auxin‐based degrons. This 4th Multinational Arabidopsis Steering Committee Roadmap outlines future directions, with emphasis on computational approaches, research support, translation to crops, conference accessibility, coordinated research efforts, climate change mitigation, sustainable production, and fundamental research. Arabidopsis will remain a nexus for discovery, innovation, and application, driving advances in both plant and human biology to the year 2030, and beyond.
more »
« less
This content will become publicly available on September 30, 2026
Guns in rosettes: The Arabidopsis chemical weapons arsenal
Abstract Arabidopsis thaliana (hereafter Arabidopsis) is a small plant with a fast generation time and a well-annotated genome, which makes it ideal for research labs. It is arguably the most used model species in basic plant sciences. Over the past half century, studies in Arabidopsis have generated enormous insight into fundamental principles of plant life, ranging from mechanistic molecular biology to the complexities of interacting ecosystems. Based on research in Arabidopsis, we now understand that while basic cellular metabolism is generally conserved across species, variation in specialized metabolite enzymes gives rise to complex bouquets of chemical weapons that are tightly interwoven with the environment. Understanding how these are produced, regulated, and—especially—how they are deployed remains a key research area for plant immunity. The breadth of work in Arabidopsis provides a unique window into this complicated aspect of life as a plant. We are happy to have an opportunity to share our common interest in these aspects in this review. Due to space constraints, we focus on compounds produced by Arabidopsis with demonstrated antimicrobial properties. We hope that this focus (despite our eagerness to write more) will inspire new avenues of research that will contribute to a more complete understanding of immunity.
more »
« less
- PAR ID:
- 10651092
- Publisher / Repository:
- Plant Physiology
- Date Published:
- Journal Name:
- Plant Physiology
- Volume:
- 199
- Issue:
- 2
- ISSN:
- 0032-0889
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.more » « less
-
Summary In both plants and animals, tissue or organ regeneration typically follows wounding, which also activates defense responses against pathogenic microbes and herbivores. Both intrinsic and environmental cues guide the molecular decisions between regeneration and defense. In animal studies, extensive research has highlighted the role of various microbes – including pathogenic, commensal, and beneficial species – in influencing the signaling interplay between immunity and regeneration. Conversely, most plant regeneration studies are conducted under sterile conditions, which leaves a gap in our understanding of how plant innate immunity influences regeneration pathways. Recent findings have begun to elucidate the roles of key defense pathways in modulating plant regeneration and the crosstalk between these two processes. These studies also explore how microbes might influence the molecular choice between defense and regeneration in plants. This review examines the molecular mechanisms governing the balance between plant regeneration and innate immunity, with a focus on the emerging role of aging and microbial interactions in shaping these processes.more » « less
-
Abstract Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a “model clade”. These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a “model clade” and make suggestions for building global networks to support future studies in the model order Brassicales.more » « less
-
null (Ed.)Abstract Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.more » « less
An official website of the United States government
