{"Abstract":["A biodiversity dataset graph: BHL<\/p>\n\nThe intended use of this archive is to facilitate (meta-)analysis of the Biodiversity Heritage Library (BHL). The Biodiversity Heritage Library improves research methodology by collaboratively making biodiversity literature openly available to the world as part of a global biodiversity community.<\/p>\n\nThis dataset provides versioned snapshots of the BHL network as tracked by Preston [2] between 2019-05-19 and 2020-05-09 using "preston update -u https://biodiversitylibrary.org".<\/p>\n\nThe archive consists of 256 individual parts (e.g., preston-00.tar.gz, preston-01.tar.gz, ...) to allow for parallel file downloads. The archive contains three types of files: index files, provenance logs and data files. In addition, index files have been individually included in this dataset publication to facilitate remote access. Index files provide a way to links provenance files in time to establish a versioning mechanism. Provenance files describe how, when, what and where the BHL content was retrieved. For more information, please visit https://preston.guoda.bio or https://doi.org/10.5281/zenodo.1410543 . <\/p>\n\nTo retrieve and verify the downloaded BHL biodiversity dataset graph, first concatenate all the downloaded preston-*.tar.gz files (e.g., cat preston-*.tar.gz > preston.tar.gz). Then, extract the archives into a "data" folder. Alternatively, you can use the preston[2] command-line tool to "clone" this dataset using:<\/p>\n\n$$ java -jar preston.jar clone --remote https://zenodo.org/record/3849560/files<\/p>\n\nAfter that, verify the index of the archive by reproducing the following provenance log history:<\/p>\n\n$$ java -jar preston.jar history\n<0659a54f-b713-4f86-a917-5be166a14110> <http://purl.org/pav/hasVersion> <hash://sha256/89926f33157c0ef057b6de73f6c8be0060353887b47db251bfd28222f2fd801a> .\n<hash://sha256/41b19aa9456fc709de1d09d7a59c87253bc1f86b68289024b7320cef78b3e3a4> <http://purl.org/pav/previousVersion> <hash://sha256/89926f33157c0ef057b6de73f6c8be0060353887b47db251bfd28222f2fd801a> .\n<hash://sha256/7582d5ba23e0d498ca4f55c29408c477d0d92b4fdcea139e8666f4d78c78a525> <http://purl.org/pav/previousVersion> <hash://sha256/41b19aa9456fc709de1d09d7a59c87253bc1f86b68289024b7320cef78b3e3a4> .\n<hash://sha256/a70774061ccded1a45389b9e6063eb3abab3d42813aa812391f98594e7e26687> <http://purl.org/pav/previousVersion> <hash://sha256/7582d5ba23e0d498ca4f55c29408c477d0d92b4fdcea139e8666f4d78c78a525> .\n<hash://sha256/007e065ba4b99867751d688754aa3d33fa96e6e03133a2097e8a368d613cd93a> <http://purl.org/pav/previousVersion> <hash://sha256/a70774061ccded1a45389b9e6063eb3abab3d42813aa812391f98594e7e26687> .\n<hash://sha256/4fb4b4d8f1ae2961311fb0080e817adb2faa746e7eae15249a3772fbe2d662a1> <http://purl.org/pav/previousVersion> <hash://sha256/007e065ba4b99867751d688754aa3d33fa96e6e03133a2097e8a368d613cd93a> .\n<hash://sha256/67cc329e74fd669945f503917fbb942784915ab7810ddc41105a82ebe6af5482> <http://purl.org/pav/previousVersion> <hash://sha256/4fb4b4d8f1ae2961311fb0080e817adb2faa746e7eae15249a3772fbe2d662a1> .\n<hash://sha256/e46cd4b0d7fdb51ea789fa3c5f7b73591aca62d2d8f913346d71aa6cf0745c9f> <http://purl.org/pav/previousVersion> <hash://sha256/67cc329e74fd669945f503917fbb942784915ab7810ddc41105a82ebe6af5482> .\n<hash://sha256/9215d543418a80510e78d35a0cfd7939cc59f0143d81893ac455034b5e96150a> <http://purl.org/pav/previousVersion> <hash://sha256/e46cd4b0d7fdb51ea789fa3c5f7b73591aca62d2d8f913346d71aa6cf0745c9f> .\n<hash://sha256/1448656cc9f339b4911243d7c12f3ba5366b54fff3513640306682c50f13223d> <http://purl.org/pav/previousVersion> <hash://sha256/9215d543418a80510e78d35a0cfd7939cc59f0143d81893ac455034b5e96150a> .\n<hash://sha256/7ee6b16b7a5e9b364776427d740332d8552adf5041d48018eeb3c0e13ccebf27> <http://purl.org/pav/previousVersion> <hash://sha256/1448656cc9f339b4911243d7c12f3ba5366b54fff3513640306682c50f13223d> .\n<hash://sha256/34ccd7cf7f4a1ea35ac6ae26a458bb603b2f6ee8ad36e1a58aa0261105d630b1> <http://purl.org/pav/previousVersion> <hash://sha256/7ee6b16b7a5e9b364776427d740332d8552adf5041d48018eeb3c0e13ccebf27> .<\/p>\n\nTo check the integrity of the extracted archive, confirm that each line produce by the command "preston verify" produces lines as shown below, with each line including "CONTENT_PRESENT_VALID_HASH". Depending on hardware capacity, this may take a while.<\/p>\n\n$ java -jar preston.jar verify\nhash://sha256/e0c131ebf6ad2dce71ab9a10aa116dcedb219ae4539f9e5bf0e57b84f51f22ca file:/home/preston/preston-bhl/data/e0/c1/e0c131ebf6ad2dce71ab9a10aa116dcedb219ae4539f9e5bf0e57b84f51f22ca OK CONTENT_PRESENT_VALID_HASH 49458087 hash://sha256/e0c131ebf6ad2dce71ab9a10aa116dcedb219ae4539f9e5bf0e57b84f51f22ca\nhash://sha256/1a57e55a780b86cff38697cf1b857751ab7b389973d35113564fe5a9a58d6a99 file:/home/preston/preston-bhl/data/1a/57/1a57e55a780b86cff38697cf1b857751ab7b389973d35113564fe5a9a58d6a99 OK CONTENT_PRESENT_VALID_HASH 25745 hash://sha256/1a57e55a780b86cff38697cf1b857751ab7b389973d35113564fe5a9a58d6a99\nhash://sha256/85efeb84c1b9f5f45c7a106dd1b5de43a31b3248a211675441ff584a7154b61c file:/home/preston/preston-bhl/data/85/ef/85efeb84c1b9f5f45c7a106dd1b5de43a31b3248a211675441ff584a7154b61c OK CONTENT_PRESENT_VALID_HASH 519892 hash://sha256/85efeb84c1b9f5f45c7a106dd1b5de43a31b3248a211675441ff584a7154b61c\nhash://sha256/251e5032afce4f1e44bfdc5a8f0316ca1b317e8af41bdbf88163ab5bd2b52743 file:/home/preston/preston-bhl/data/25/1e/251e5032afce4f1e44bfdc5a8f0316ca1b317e8af41bdbf88163ab5bd2b52743 OK CONTENT_PRESENT_VALID_HASH 787414 hash://sha256/251e5032afce4f1e44bfdc5a8f0316ca1b317e8af41bdbf88163ab5bd2b52743<\/p>\n\nNote that a copy of the java program "preston", preston.jar, is included in this publication. The program runs on java 8+ virtual machine using "java -jar preston.jar", or in short "preston".<\/p>\n\nFiles in this data publication:<\/p>\n\n--- start of file descriptions ---<\/p>\n\n-- description of archive and its contents (this file) --\nREADME<\/p>\n\n-- executable java jar containing preston[2] v0.1.15. --\npreston.jar<\/p>\n\n-- preston archives containing BHL data files, associated provenance logs and a provenance index --\npreston-[00-ff].tar.gz<\/p>\n\n-- individual provenance index files --\n2a5de79372318317a382ea9a2cef069780b852b01210ef59e06b640a3539cb5a\n2b1104cb7749e818c9afca78391b2d0099bbb0a32f2b348860a335cd2f8f6800\n4081bc59dff58d63f6a86c623cb770f01e9a355a42495b205bcb538cd526190f\n47a2816f8b5600b24487093adcddfea12434cc4f270f3ab09d9215fbdd546cd2\n6f99a1388823fca745c9e22ac21e2da909a219aa1ace55170fa9248c0276903c\n7ae46d7cd9b5a0f5889ba38bac53c82e591b0bdf8b605f5e48c0dce8fb7b717f\n82903464889fea7c53f53daedf4e41fa31092f82619edeb3415eb2b473f74af3\n9e8c86243df39dd4fe82a3f814710eccf73aa9291d050415408e346fa2b09e70\na8308fbf4530e287927c471d881ce0fc852f16543d46e1ee26f1caba48815f3a\nbcec6df2ea7f74e9a6e2830d0072e6b2fbe65323d9ddb022dd6e1349c23996e2\ncfe47c25ec0210ac73c06b407beb20d9c58355cb15bae427fdc7541870ca2e4e\nf73fc9e70bce8f21f0c96b8ef0903749d8f223f71343ab5a8910968f99c9b8b6<\/p>\n\n--- end of file descriptions ---<\/p>\n\n\nReferences<\/p>\n\n[1] Biodiversity Heritage Library (BHL, https://biodiversitylibrary.org) accessed from 2019-05-19 to 2020-05-09 with provenance hash://sha256/34ccd7cf7f4a1ea35ac6ae26a458bb603b2f6ee8ad36e1a58aa0261105d630b1.\n[2] https://preston.guoda.bio, https://doi.org/10.5281/zenodo.1410543 .<\/p>\n\n\nThis work is funded in part by grant NSF OAC 1839201 from the National Science Foundation.<\/p>"]}
more »
« less
Sound files on heritage speech and the Obligatory Contour Principle
{"Abstract":["This dataset accompanies the paper "Heritage Tone and the Effects of the Obligatory Contour Principle," published in <i> Heritage Language Journal. <i>"]}
more »
« less
- Award ID(s):
- 2313787
- PAR ID:
- 10651138
- Publisher / Repository:
- Harvard Dataverse
- Date Published:
- Edition / Version:
- 1.0
- Subject(s) / Keyword(s):
- Arts and Humanities
- Format(s):
- Medium: X Size: 8965890; 554 Other: application/zip; text/plain
- Size(s):
- 8965890 554
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
These laser altimetry data were collected as part of the 2023-24 <a href="https://www.coldex.org">NSF COLDEX </a> CXA2 airborne campaign targeting the southern flank of East Antarctica's Dome A. In this Level 2 product, we have used the laser range to the surface and complementary aircraft position data to calculated the ice surface elevation, which is an important constraint on ice flow. Complementary radar, gravity, magnetics and imagery were also collected. <p> <i>Data format:</i>Data are formatted as text files with a header and the following tab delimited format columns. Data are in the same format as similar <a href="https://doi.org/10.5067/JV9DENETK13E"> IceBridge ILUTP2 altimetry data. </a> <p> Field 1: Year (UTC)<br> Field 2: Day of year (UTC)<br> Field 3: Second of day (UTC)<br> Field 4: Longitude Angle (deg) (WGS-84) <br> Field 5: Latitude Angle (deg) (WGS-84)<br> Field 6: Laser Derived Surface Elevation (m) (WGS-84)<br> <p> Missing values have been replaced by "nan". The effective footprint of the laser data is 25 m along track by 1 meter across track. Some cloud filtering was performed. <p> <i>Uncertainties</i>: A comparison of this laser altimetry dataset north of 87.5˚S with the <a href="https://doi.org/10.7910/DVN/EBW8UC"> REMAv2 </a>100 m mosaic digital terrain model indicate a median bias of 17 cm and a root mean squared (RMS) difference of 20 cm. Intersections between profiles within this survey, on the Antarctic Plateau but away from South Pole Station, have RMS differences of 6.8 cm. <p> <i>Datum: </i>WGS-84 ellipsoid; ITRF 2008 <p> <i>Geolocation: </i>Positioning and orientation for CXA1 came from loosely coupled joint PPP/inertial solutions using a Novatel OEM-4 GPS receiver and an iMAR FSAS IMU. <p> <i>Pointing bias: </i> roll: 0.340 degrees; pitch: -0.505 degrees <br> Pointing angle (pointing bias) is the angular offset of the downward-pointing laser boresight respect to the vehicle body frame's vertical (Z) axis. This estimated angle is derived by comparing measurements at crossovers. Pointing angle is provided in the vehicle body frame, using the laser origin for the rotation node. A positive pitch rotation indicates that the laser beam intersects the ground forward of the z-axis. A positive roll rotation indicates that the laser beam intersects the ground left of the z-axis. Pointing biases were found using the minimization of cross over difference method from <a href="http://dx.doi.org/10.3189/2015JoG14J048">Young et al., 2015</a>. <p> <i>Level arm: </i>X: 0 m; Y: 0.2 m; Z: -0.22 m <br> The lever arm is the position of the laser origin relative to the aircraft position solution, estimated using crossover-error minimization. Lever arm is provided in the vehicle body frame, with +X is forward, +Y is right, and +Z is down. Lever arm was measured after installation in the field. <p> <i>GNSS_antenna: </i>AeroAntenna AT1675-17W-TCNF-000-RG-36-NM <br> The coordinate system for the laser-gps lever arm is X forward, Y right, and Z down, from the center of position.more » « less
-
These laser altimetry data were collected as part of the 2022-23 <a href="https://www.coldex.org">NSF COLDEX </a> CXA1 airborne campaign targeting the southern flank of East Antarctica's Dome A. In this Level 2 product, we have used the laser range to the surface and complementary aircraft position data to calculated the ice surface elevation, which is an important constraint on ice flow. Complementary radar, gravity, magnetics and imagery were also collected. <p> <i>Data format:</i>Data are formatted as text files with a header and the following tab delimited format columns. Data are in the same format as similar <a href="https://doi.org/10.5067/JV9DENETK13E"> IceBridge ILUTP2 altimetry data. </a> <p> Field 1: Year (UTC)<br> Field 2: Day of year (UTC)<br> Field 3: Second of day (UTC)<br> Field 4: Longitude Angle (deg) (WGS-84) <br> Field 5: Latitude Angle (deg) (WGS-84)<br> Field 6: Laser Derived Surface Elevation (m) (WGS-84)<br> <p> Missing values have been replaced by "nan". The effective footprint of the laser data is 25 m along track by 1 meter across track. Some cloud filtering was performed. <p> <i>Uncertainties</i>: A comparison of this laser altimetry dataset north of 87.5˚S with the <a href="https://doi.org/10.7910/DVN/EBW8UC"> REMAv2 </a>100 m mosaic digital terrain model indicate a median bias of 17 cm and a root mean squared (RMS) difference of 20 cm. Intersections between profiles within this survey, on the Antarctic Plateau but away from South Pole Station, have RMS differences of 6.4 cm. <p> <i>Datum: </i>WGS-84 ellipsoid; ITRF 2008 <p> <i>Geolocation: </i>Positioning and orientation for CXA1 came from loosely coupled joint PPP/inertial solutions using a Novatel OEM-4 GPS receiver and an iMAR FSAS IMU. <p> <i>Pointing bias: </i> roll: -0.2 degrees; pitch: -0.350 degrees <br> Pointing angle (pointing bias) is the angular offset of the downward-pointing laser boresight respect to the vehicle body frame's vertical (Z) axis. This estimated angle is derived by comparing measurements at crossovers. Pointing angle is provided in the vehicle body frame, using the laser origin for the rotation node. A positive pitch rotation indicates that the laser beam intersects the ground forward of the z-axis. A positive roll rotation indicates that the laser beam intersects the ground left of the z-axis. Pointing biases were found using the minimization of cross over difference method from <a href="http://dx.doi.org/10.3189/2015JoG14J048">Young et al., 2015</a>. <p> <i>Level arm: </i>X: 0 m; Y: 0.2 m; Z: -0.22 m <br> The lever arm is the position of the laser origin relative to the aircraft position solution, estimated using crossover-error minimization. Lever arm is provided in the vehicle body frame, with +X is forward, +Y is right, and +Z is down. Lever arm was measured after installation in the field. <p> <i>GNSS_antenna: </i>AeroAntenna AT1675-17W-TCNF-000-RG-36-NM <br> The coordinate system for the laser-gps lever arm is X forward, Y right, and Z down, from the center of position.more » « less
-
{"Abstract":["The PPT survey extended from the Ross Ice Shelf, southward over the TAM along 150W between the Scott and Reedy Glaciers, and through the South Pole. Approximately 15,000 line km were flown. North-south oriented transects were flown 10 km apart and west-east tie lines were flown with a 30 km line spacing. Fifteen km long transect 'run-ins' and 'run-outs' were added to each line, thus ensuring data collection to survey boundaries. Laser altimetry, ice-penetrating radar, gravity and magnetic field intensity data were collected. This work was funded by NSF-OPP grant 9615832 with the project title: Collaborative Research: Contrasting Architecture and Dynamics of the Transantarctic Mountains (Pensacola-Pole Transect). Principal Investigators were D.D. Blankenship, University of Texas Institute for Geophysics, and R.E. Bell and W.R. Buck, Lamont-Doherty Earth Observatory.\n<br>\n<br>\nThis work was conducted by the Support Office for Aerogeophysical Research (SOAR) NSF facility under cooperative agreement OPP-9319379. The 1998/1999 field season <a href="http://hdl.handle.net/2152/65412"> report </a>(Holt et al 1999) describes the field work in more detail.\n<br>\n<br>\nThese data are gridded orthogonal data with a point every 850 m. Data is in a space delimited ASCII table with three columns: Longitude, Latitude and geophysical observation. Grids are smoothed using a Gaussian filter (2.125 km for gravity, magnetic field anomaly, surface elevation and 8.5 km for ice thickness) and surfaced using a bicubic spline method.\n<br>\nObservations include:\n<ol>\n<li> Bed elevation (m, WGS-84) </li> \n<li> Gravity disturbance (mGal, WGS-84) </li> \n<li> Ice Thickness (m) </li> \n<li> Laser Derived Surface Elevation (m, WGS-84) </li> \n<li> Magnetic Anomaly (nT, IGRF) </li> \n<li> Radar Derived Surface Elevation (m, WGS-84) </li> \n</ol>\nA browse image is included. \n<br><br>\n<i>Acknowledgement: </i><br>\nIn keeping with NSF Grant Policy, any publication using these data (including web documents) must contain the following acknowledgment: "This material is based on work supported by the National Science Foundation under cooperative agreement OPP-9319379." Also, any oral presentation utilizing these materials should acknowledge the support of the National Science Foundation. In addition, we request that any oral presentation, web page or publication also acknowledge SOAR and the University of Texas. A suitable citation for PPT data is:\n<br>\n<i>Davis, M.B., 2001, Subglacial Morphology and Structural Geology in the Southern Transantarctic Mountains from Airborne Geophysics, M.S. Thesis, Univ. of Texas, 133 pp.<a href="http://dx.doi.org/10.26153/tsw/2786">doi:10.26153/tsw/2786</a></i>\n<br>\nThese data represent the data that was hosted on the UTIG webpage at https://www-udc.ig.utexas.edu/external/facilities/aero/data/soar/PPT/SOAR_ppt.htm."]}more » « less
-
<p>NSF COLDEX performed two airborne campaigns from South Pole Station over the Southern Flank of Dome A and 2022-23 and 2023-24, searching for a potential site of a continuous ice core that could sample the mid-Pleistocene transition. Ice thickness data extracted from the MARFA radar system has allow for a new understanding of this region.</p> <p>Here we generate crustal scale maps of ice thickness, bed elevation, specularity content, subglacial RMS deviation and fractional basal ice thickness with 1 km sampling, and 10 km resolution. We include both masked and unmasked grids.</p> <p> The projection is in the SCAR standard ESPG:3031 polar stereographic projection with true scale at 71˚S.</p> <p>These geotiffs were generated using performed using GMT6.5 (<a href="https://doi.org/10.1029/2019GC008515">Wessel et al., 2019</a>) using the pygmt interface, by binning the raw data to 2.5 km cells, and using the <a href="https://github.com/sakov/nn-c"> nnbathy </a> program to apply natural neighbor interpolation to 1 km sampling. A 10 km Gaussian filter - representing typical lines spacings - was applied and then a mask was applied for all locations where the nearest data point was further than 8 km. </p> Ice thickness, bed elevation and RMS deviation @ 400 m length scale (<a href="http://dx.doi.org/10.1029/2000JE001429">roughness</a>) data includes the following datasets: <ul> <li> UTIG/CRESIS <a href="https://doi.org/10.18738/T8/J38CO5">NSF COLDEX Airborne MARFA data</a></li> <li> British Antarctic Survey <a href="https://doi.org/10.5285/0f6f5a45-d8af-4511-a264-b0b35ee34af6">AGAP-North</a></li> <li> LDEO <a href="https://doi.org/10.1594/IEDA/317765"> AGAP-South </a></li> <li> British Antarctic Survey <a href="https://doi.org/10.5270/esa-8ffoo3e">Polargap</a></li> <li> UTIG Support Office for Airborne Research <a href="https://doi.org/10.15784/601588">Pensacola-Pole Transect (PPT) </a></li> <li> NASA/CReSIS <a href="https://doi.org/10.5067/GDQ0CUCVTE2Q"> 2016 and 2018 Operation Ice Bridge </a> </li> <li> ICECAP/PRIC <a href="https://doi.org/10.15784/601437"> SPICECAP Titan Dome Survey </a> </ul> <p>Specularity content (<a href="https://doi.org/10.1109/LGRS.2014.2337878">Schroeder et al. 2014</a>) is compiled from <a href="https://doi.org/10.18738/T8/KHUT1U"> Young et al. 2025a </a> and <a href="https://doi.org/10.18738/T8/6T5JS6"> Young et al. 2025b</a>.</p> <p>Basal ice fractional thickness is complied from manual interpretation by Vega Gonzàlez, Yan and Singh. </p> <p>Code to generated these grids can be found at <a href="https://github.com/smudog/COLDEX_dichotomy_paper_2025"> at github.com </a></p>more » « less
An official website of the United States government
