skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 22, 2026

Title: Connecting Federated ADMM to Bayes
We provide new connections between two distinct federated learning approaches based on (i) ADMM and (ii) Variational Bayes (VB), and propose new variants by combining their complementary strengths. Specifically, we show that the dual variables in ADMM naturally emerge through the "site" parameters used in VB with isotropic Gaussian covariances. Using this, we derive two versions of ADMM from VB that use flexible covariances and functional regularisation, respectively. Through numerical experiments, we validate the improvements obtained in performance. The work shows connection between two fields that are believed to be fundamentally different and combines them to improve federated learning.  more » « less
Award ID(s):
2107391
PAR ID:
10651179
Author(s) / Creator(s):
; ;
Publisher / Repository:
ICLR Conference
Date Published:
Subject(s) / Keyword(s):
federated learning, bayesian, variational inference, admm
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In order to meet the requirements for safety and latency in many IoT applications, intelligent decisions must be made right here right now at the network edge, calling for edge intelligence. To facilitate fast edge learning, this work advocates a platform-aided federated meta-learning architecture, where a set of edge nodes joint force to learn a meta-model (i.e., model initialization for adaptation in a new learning task) by exploiting the similarity among edge nodes as well as the cloud knowledge transfer. The federated meta-learning problem is cast as a regularized stochastic optimization problem, using Bregman Divergence between the edge model and the cloud pre-trained model as the regularization. We then devise an alternating direction method of multiplier (ADMM) based Hessian-free federated meta-learning algorithm, called ADMM-FedMeta, with inexact Hessian estimation. Further, we analyze the convergence properties and the rapid adaptation performance of ADMM-FedMeta for the general non-convex case. The theoretical results show that under mild conditions, ADMM-FedMeta converges to an $$\epsilon$$-approximate first-order stationary point after at most $$\mathcal{O}(1/\epsilon^2)$$ communication rounds. Extensive experimental studies on benchmark datasets demonstrate the effectiveness and efficiency of ADMM-FedMeta, and showcase that ADMM-FedMeta outperforms the existing baselines. 
    more » « less
  2. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    Federated reinforcement learning (FedRL) enables agents to collaboratively train a global policy without sharing their individual data. However, high communication overhead remains a critical bottleneck, particularly for natural policy gradient (NPG) methods, which are second-order. To address this issue, we propose the FedNPG-ADMM framework, which leverages the alternating direction method of multipliers (ADMM) to approximate global NPG directions efficiently. We theoretically demonstrate that using ADMM-based gradient updates reduces communication complexity from $O(d^2)$ to $O(d)$ at each iteration, where $$d$$ is the number of model parameters. Furthermore, we show that achieving an $$\epsilon$$-error stationary convergence requires $$O(\frac{1}{(1-\gamma)^2-\epsilon})$$ iterations for discount factor $$\gamma$$, demonstrating that FedNPG-ADMM maintains the same convergence rate as standard FedNPG. Through evaluation of the proposed algorithms in MuJoCo environments, we demonstrate that FedNPG-ADMM maintains the reward performance of standard FedNPG, and that its convergence rate improves when the number of federated agents increases. 
    more » « less
  3. Federated learning at edge systems not only mitigates privacy concerns by keeping data localized but also leverages edge computing resources to enable real-time AI inference and decision-making. In a blockchain-based federated learning framework over edge clouds, edge servers as clients can contribute private data or computing resources to the overall training or mining task for secure model aggregation. To overcome the impractical assumption that edge servers will voluntarily join training or mining, it is crucial to design an incentive mechanism that motivates edge servers to achieve optimal training and mining outcomes. In this paper, we investigate the incentive mechanism design for a semi-asynchronous blockchain-based federated edge learning system. We model the resource pricing mechanism among edge servers and task publishers as a Stackelberg game and prove the existence and uniqueness of a Nash equilibrium in such a game. We then propose an iterative algorithm based on the Alternating Direction Method of Multipliers (ADMM) to achieve the optimal strategies for each participating edge server. Finally, our simulation results verify the convergence and efficiency of our proposed scheme. 
    more » « less
  4. While embracing various machine learning techniques to make effective decisions in the big data era, preserving the privacy of sensitive data poses significant challenges. In this paper, we develop a privacy-preserving distributed machine learning algorithm to address this issue. Given the assumption that each data provider owns a dataset with different sample size, our goal is to learn a common classifier over the union of all the local datasets in a distributed way without leaking any sensitive information of the data samples. Such an algorithm needs to jointly consider efficient distributed learning and effective privacy preservation. In the proposed algorithm, we extend stochastic alternating direction method of multipliers (ADMM) in a distributed setting to do distributed learning. For preserving privacy during the iterative process, we combine differential privacy and stochastic ADMM together. In particular, we propose a novel stochastic ADMM based privacy-preserving distributed machine learning (PS-ADMM) algorithm by perturbing the updating gradients, that provide differential privacy guarantee and have a low computational cost. We theoretically demonstrate the convergence rate and utility bound of our proposed PS-ADMM under strongly convex objective. Through our experiments performed on real-world datasets, we show that PS-ADMM outperforms other differentially private ADMM algorithms under the same differential privacy guarantee. 
    more » « less
  5. Federated reinforcement learning (FRL) has emerged as a promising paradigm, enabling multiple agents to collaborate and learn a shared policy adaptable across heterogeneous environments. Among the various reinforcement learning (RL) algorithms, the actor-critic (AC) algorithm stands out for its low variance and high sample efficiency. However, little to nothing is known theoretically about AC in a federated manner, especially each agent interacts with a potentially different environment. The lack of such results is attributed to various technical challenges: a two-level structure illustrating the coupling effect between the actor and the critic, heterogeneous environments, Markovian sampling and multiple local updates. In response, we study Single-Loop Federated Actor Critic (SFAC) where agents perform AC learning in a two-level federated manner while interacting with heterogeneous environments. We then provide bounds on the convergence error of SFAC. The results show that the convergence error asymptotically converges to a near-stationary point, with the extent proportional to environment heterogeneity. Moreover, the sample complexity exhibits a linear speed-up through the federation of agents. We evaluate the performance of SFAC through numerical experiments using common RL benchmarks, which demonstrate its effectiveness. 
    more » « less