skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Incentive mechanism design for semi-asynchronous blockchain-based federated edge learning
Federated learning at edge systems not only mitigates privacy concerns by keeping data localized but also leverages edge computing resources to enable real-time AI inference and decision-making. In a blockchain-based federated learning framework over edge clouds, edge servers as clients can contribute private data or computing resources to the overall training or mining task for secure model aggregation. To overcome the impractical assumption that edge servers will voluntarily join training or mining, it is crucial to design an incentive mechanism that motivates edge servers to achieve optimal training and mining outcomes. In this paper, we investigate the incentive mechanism design for a semi-asynchronous blockchain-based federated edge learning system. We model the resource pricing mechanism among edge servers and task publishers as a Stackelberg game and prove the existence and uniqueness of a Nash equilibrium in such a game. We then propose an iterative algorithm based on the Alternating Direction Method of Multipliers (ADMM) to achieve the optimal strategies for each participating edge server. Finally, our simulation results verify the convergence and efficiency of our proposed scheme.  more » « less
Award ID(s):
2128378
PAR ID:
10658461
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ITU Journal on Future and Evolving Technologies
Date Published:
Journal Name:
ITU Journal on Future and Evolving Technologies
Volume:
6
Issue:
2
ISSN:
2616-8375
Page Range / eLocation ID:
119 to 131
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As edge computing complements the cloud to enable computational services right at the network edge, federated learning (FL) can also benefit from close-by edge computing infrastructure. However, most prior works on federated edge learning (FEL) mainly focus on one shared global model during the federated training in edge systems. In a real edge computing scenario, there may co-exist multiple various FL models that are owned by different entities and used by different applications. Simultaneously training these models competes both computing and networking resources in the shared edge system. Therefore, in this work, we consider a multi-model federated edge learning where multiple FEL models are being trained in the edge network and edge servers can act as either parameter servers or workers of these FEL models. We formulate a joint participant selection and learning scheduling problem, which is a non-linear mixed-integer program, aiming to minimize the total cost of all FEL models while satisfying the desired convergence rate of trained FEL models and the constrained edge resources. We then design several algorithms by decoupling the original problem into two or three sub-problems which can be solved respectively and iteratively. Extensive simulations with real-world training datasets and FEL models show that our proposed algorithms can efficiently reduce the average total cost of all FEL models in a multi-model FEL setting compared with existing algorithms. 
    more » « less
  2. The edge computing paradigm allows computationally intensive tasks to be offloaded from small devices to nearby (more) powerful servers, via an edge network. The intersection between such edge computing paradigm and Machine Learning (ML), in general, and deep learning in particular, has brought to light several advantages for network operators: from automating management tasks, to gain additional insights on their networks. Most of the existing approaches that use ML to drive routing and traffic control decisions are valuable but rarely focus on challenged networks, that are characterized by continually varying network conditions and the high volume of traffic generated by edge devices. In particular, recently proposed distributed ML-based architectures require either a long synchronization phase or a training phase that is unsustainable for challenged networks. In this paper, we fill this knowledge gap with Blaster, a federated architecture for routing packets within a distributed edge network, to improve the application's performance and allow scalability of data-intensive applications. We also propose a novel path selection model that uses Long Short Term Memory (LSTM) to predict the optimal route. Finally, we present some initial results obtained by testing our approach via simulations and with a prototype deployed over the GENI testbed. By leveraging a Federated Learning (FL) model, our approach shows that we can optimize the communication between SDN controllers, preserving bandwidth for the data traffic. 
    more » « less
  3. null (Ed.)
    Unmanned Aerial Vehicle (UAV)-assisted Multi-access Edge Computing (MEC) systems have emerged recently as a flexible and dynamic computing environment, providing task offloading service to the users. In order for such a paradigm to be viable, the operator of a UAV-mounted MEC server should enjoy some form of profit by offering its computing capabilities to the end users. To deal with this issue in this paper, we apply a usage-based pricing policy for allowing the exploitation of the servers’ computing resources. The proposed pricing mechanism implicitly introduces a more social behavior to the users with respect to competing for the UAV-mounted MEC servers’ computation resources. In order to properly model the users’ risk-aware behavior within the overall data offloading decision-making process the principles of Prospect Theory are adopted, while the exploitation of the available computation resources is considered based on the theory of the Tragedy of the Commons. Initially, the user’s prospect-theoretic utility function is formulated by quantifying the user’s risk seeking and loss aversion behavior, while taking into account the pricing mechanism. Accordingly, the users’ pricing and risk-aware data offloading problem is formulated as a distributed maximization problem of each user’s expected prospect-theoretic utility function and addressed as a non-cooperative game among the users. The existence of a Pure Nash Equilibrium (PNE) for the formulated non-cooperative game is shown based on the theory of submodular games. An iterative and distributed algorithm is introduced which converges to the PNE, following the learning rule of the best response dynamics. The performance evaluation of the proposed approach is achieved via modeling and simulation, and detailed numerical results are presented highlighting its key operation features and benefits. 
    more » « less
  4. Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment. 
    more » « less
  5. Federated learning (FL) has been emerging as a new distributed machine learning paradigm recently. Although FL can protect the data privacy of participants by keeping their training data on local devices, there are recent works raising new privacy concerns especially when workers or the parameter server of FL are untrustworthy or malicious. One effective way to solve the problem is using hierarchical federated learning (HFL) where a few middle-layer aggregators (or called group leaders) are used to aggregate local model updates from workers and send group model updates to the parameter server. In this paper, we consider the participant selection problem of HFL in an edge cloud with multiple FL models, where each model needs to select one parameter server, a few group leaders and a certain amount of workers from edge servers to jointly perform HFL. We first formulate this problem as a non-linear integer programming, aiming to minimize the total learning cost of all models while satisfying the constrained edge resources. We then design a three-stage algorithm by decoupling the original problem into three sub-problems and solving them iteratively. Simulations with real-world datasets and FL models confirm that our proposed algorithm can efficiently reduce the average total learning cost in edge cloud compared with existing methods. 
    more » « less