A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ →h), Γ(h→$$ \mathcal{GG} $$ ), Γ(h→$$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where$$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.
more »
« less
This content will become publicly available on June 1, 2026
Integer dual dimensions in scale-separated AdS3 from massive IIA
A<sc>bstract</sc> We study supersymmetric scale-separated AdS3flux vacua of massive IIA on G2 orbifolds with smeared orientifold planes. We consider two types of$$ {T}^7/{Z}_2^3 $$ orbifolds which, with appropriate flux choices, yield integer dual dimensions for the operators corresponding to the closed string scalar fields in the dual CFT. As with all other known examples, the dual conformal dimensions are only parametrically close to integer values.
more »
« less
- Award ID(s):
- 2210271
- PAR ID:
- 10651232
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 6
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The electricE1 and magneticM1 dipole responses of the$$N=Z$$ nucleus$$^{24}$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$\gamma ,\gamma ^{\prime }$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$ , four$$J^{\pi }=1^+$$ , and six$$J^{\pi }=2^+$$ states in$$^{24}$$ Mg. De-excitation$$\gamma $$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ is observed, but this$$N=Z$$ nucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ e$$^2 \, $$ fm$$^2$$ . The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$ Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$1^+$$ level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$ level.more » « less
-
Abstract The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at centre-of-momentum energy of$$\sqrt{s} =13$$ TeV collected during the LHC Run 2 data-taking period. The measurement is performed by combining the measurements of the electromagnetic calorimeter EMCal and the central tracking detectors ITS and TPC, covering a pseudorapidity range of$$|\eta ^{\gamma }|<0.67$$ and a transverse momentum range of$$7 GeV/$$c$$ . The result extends to lower$$p_\textrm{T}^{\gamma }$$ and$$x_\textrm{T}^{\gamma } = 2p_\textrm{T}^{\gamma }/\sqrt{s} $$ ranges, the lowest$$x_\textrm{T}^{\gamma }$$ of any isolated photon measurements to date, extending significantly those measured by the ATLAS and CMS experiments towards lower$$p_\textrm{T}^{\gamma }$$ at the same collision energy with a small overlap between the measurements. The measurement is compared with next-to-leading order perturbative QCD calculations and the results from the ATLAS and CMS experiments as well as with measurements at other collision energies. The measurement and theory prediction are in agreement with each other within the experimental and theoretical uncertainties.more » « less
-
A<sc>bstract</sc> A measurement of theCP-violating parameters in$$ {B}_s^0\boldsymbol{\to}{D}_s^{\mp }{K}^{\pm} $$ decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yieldingCf= 0.791 ± 0.061 ± 0.022,$$ {A}_f^{\Delta \Gamma} $$ = −0.051 ± 0.134 ± 0.058,$$ {A}_{\overline{f}}^{\Delta \Gamma} $$ = −0.303 ± 0.125 ± 0.055,Sf= −0.571 ± 0.084 ± 0.023 and$$ {S}_{\overline{f}} $$ = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6σ. Together with the value of the$$ {B}_s^0 $$ mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angleγequal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1resulting in a determination of$$ \gamma ={\left({81}_{-11}^{+12}\right)}^{\circ } $$ .more » « less
-
A<sc>bstract</sc> The production of prompt$$ {\Lambda}_{\textrm{c}}^{+} $$ baryons is measured via the exclusive decay channel$$ {\Lambda}_{\textrm{c}}^{+}\to p{\textrm{K}}^{-}{\pi}^{+} $$ at a center-of-mass energy per nucleon pair of 5.02 TeV, using proton-proton (pp) and lead-lead (PbPb) collision data collected by the CMS experiment at the CERN LHC. The pp and PbPb data were obtained in 2017 and 2018 with integrated luminosities of 252 and 0.607 nb−1, respectively. The measurements are performed within the$$ {\Lambda}_{\textrm{c}}^{+} $$ rapidity interval |y|<1 with transverse momentum (pT) ranges of 3–30 and 6–40 GeV/cfor pp and PbPb collisions, respectively. Compared to the yields in pp collisions scaled by the expected number of nucleon-nucleon interactions, the observed yields of$$ {\Lambda}_{\textrm{c}}^{+} $$ withpT>10 GeV/care strongly suppressed in PbPb collisions. The level of suppression depends significantly on the collision centrality. The$$ {\Lambda}_{\textrm{c}}^{+} $$ /D0production ratio is similar in PbPb and pp collisions atpT>10 GeV/c, suggesting that the coalescence process does not play a dominant role in prompt$$ {\Lambda}_{\textrm{c}}^{+} $$ baryon production at higherpT.more » « less
An official website of the United States government
