This work introduces Private Eyes, the first zero-leakage biometric database. The only leakage of the system is unavoidable: 1) the log of the dataset size and 2) the fact that a query occurred. Private Eyes is built from oblivious symmetric searchable encryption. Approximate proximity queries are used: given a noisy reading of a biometric, the goal is to retrieve all stored records that are close enough according to a distance metric. Private Eyes combines locality sensitive-hashing or LSHs (Indyk and Motwani, STOC 1998) and oblivious maps which map keywords to values. One computes many LSHs of each record in the database and uses these hashes as keywords in the oblivious map with the matching biometric readings concatenated as the value. At search time with a noisy reading, one computes the LSHs and retrieves the disjunction of the resulting values from the map. The underlying oblivious map needs to answer disjunction queries efficiently. We focus on the iris biometric which requires a large number of LSHs, approximately 1000. Boldyreva and Tang’s (PoPETS 2021) design yields a suitable map for a small number of LSHs (their application was in zeroleakage k-nearest-neighbor search). Our solution is a zero-leakage disjunctive map designed for the setting when most clauses do not match any records. For the iris, on average at most 6% of LSHs match any stored value. We evaluate using the ND-0405 dataset; this dataset has 356 irises suitable for testing. To scale our evaluation, we use a generative adversarial network to produce synthetic irises. Accurate statistics on sizes beyond available datasets is crucial to optimizing the cryptographic primitives. This tool may be of independent interest. For the largest tested parameters of a 5000 synthetic iris database, a search requires 18 rounds of communication and 25ms of parallel computation. Our scheme is implemented and open-sourced.
more »
« less
Private Eyes: Zero-Leakage Iris Searchable Encryption
This work introduces Private Eyes, the first zero-leakage biometric database. The only leakage of the system is unavoidable: 1) the log of the dataset size and 2) the fact that a query occurred. Private Eyes is built from oblivious symmetric searchable encryption. Approximate proximity queries are used: given a noisy reading of a biometric, the goal is to retrieve all stored records that are close enough according to a distance metric. Private Eyes combines locality sensitive-hashing or LSHs (Indyk and Motwani, STOC 1998) and oblivious maps which map keywords to values. One computes many LSHs of each record in the database and uses these hashes as keywords in the oblivious map with the matching biometric readings concatenated as the value. At search time with a noisy reading, one computes the LSHs and retrieves the disjunction of the resulting values from the map. The underlying oblivious map needs to answer disjunction queries efficiently. We focus on the iris biometric which requires a large number of LSHs, approximately 1000. Boldyreva and Tang's (PoPETS 2021) design yields a suitable map for a small number of LSHs (their application was in zero-leakage k-nearest-neighbor search). Our solution is a zero-leakage disjunctive map designed for the setting when most clauses do not match any records. For the iris, on average at most 6% of LSHs match any stored value. For the largest tested parameters of a 5000 synthetic iris database, a search requires 18 rounds of communication and 25ms of parallel computation. Our scheme is implemented and open-sourced.
more »
« less
- PAR ID:
- 10651258
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 383 to 394
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biometric databases collect people's information and perform proximity search (finding records within bounded distance of the query) with few cryptographic protections. This work studies proximity searchable encryption applied to the iris biometric. Prior work proposed to build proximity search from inner product functional encryption (Kim et al., SCN 2018). This work identifies and closes two gaps in this approach: 1. Biometrics use long vectors, often with thousands of bits. Many inner product encryption schemes have to invert a matrix whose dimension scales with this size. Setup is then not feasible on commodity hardware. We introduce a technique that improves setup efficiency without harming accuracy. 2.Prior approaches leak distance between queries and all stored records. We propose a construction from function hiding, predicate, inner product encryption (Shen et al., TCC 2009) that avoids this leakage. Finally, we show that our scheme can be instantiated using symmetric pairing groups, which improves search efficiency.more » « less
-
Biometric databases collect people's information and allow users to perform proximity searches (finding all records within a bounded distance of the query point) with few cryptographic protections. This work studies proximity searchable encryption applied to the iris biometric. Prior work proposed inner product functional encryption as a technique to build proximity biometric databases (Kim et al., SCN 2018). This is because binary Hamming distance is computable using an inner product. This work identifies and closes two gaps to using inner product encryption for biometric search: Biometrics naturally use long vectors often with thousands of bits. Many inner product encryption schemes generate a random matrix whose dimension scales with vector size and have to invert this matrix. As a result, setup is not feasible on commodity hardware unless we reduce the dimension of the vectors. We explore state of the art techniques to reduce the dimension of the iris biometric and show that all known techniques harm the accuracy of the resulting system. That is, for small vector sizes multiple unrelated biometrics are returned in the search. For length 64 vectors, at a 90% probability of the searched biometric being returned, 10% of stored records are erroneously returned on average. Rather than changing the feature extractor, we introduce a new cryptographic technique that allows one to generate several smaller matrices. For vectors of length 1024 this reduces time to run setup from 23 days to 4 minutes. At this vector length, for the same $90%$ probability of the searched biometric being returned, .02% of stored records are erroneously returned on average. Prior inner product approaches leak distance between the query and all stored records. We refer to these as distance-revealing. We show a natural construction from function hiding, secret-key, predicate, inner product encryption (Shen, Shi, and Waters, TCC 2009). Our construction only leaks access patterns, and which returned records are the same distance from the query. We refer to this scheme as distance-hiding. We implement and benchmark one distance-revealing and one distance-hiding scheme. The distance-revealing scheme can search a small (hundreds) database in 4 minutes while the distance-hiding scheme is not yet practical, requiring 3.5 hours.more » « less
-
Alam, Mohammad S.; Asari, Vijayan K. (Ed.)Iris recognition is one of the well-known areas of biometric research. However, in real-world scenarios, subjects may not always provide fully open eyes, which can negatively impact the performance of existing systems. Therefore, the detection of blinking eyes in iris images is crucial to ensure reliable biometric data. In this paper, we propose a deep learning-based method using a convolutional neural network to classify blinking eyes in off-angle iris images into four different categories: fully-blinked, half-blinked, half-opened, and fully-opened. The dataset used in our experiments includes 6500 images of 113 subjects and contains images of a mixture of both frontal and off-angle views of the eyes from -50 to 50 in gaze angle. We train and test our approach using both frontal and off-angle images and achieve high classification performance for both types of images. Compared to training the network with only frontal images, our approach shows significantly better performance when tested on off-angle images. These findings suggest that training the model with a more diverse set of off-angle images can improve its performance for off-angle blink detection, which is crucial for real-world applications where the iris images are often captured at different angles. Overall, the deep learning-based blink detection method can be used as a standalone algorithm or integrated into existing standoff biometrics frameworks to improve their accuracy and reliability, particularly in scenarios where subjects may blink.more » « less
-
Dynamic Searchable Symmetric Encryption (DSSE) provides efficient techniques for securely searching and updating an encrypted database. However, efficient DSSE schemes leak some sensitive information to the server. Recent works have implemented forward and backward privacy as security properties to reduce the amount of information leaked during update operations. Many attacks have shown that leakage from search operations can be abused to compromise the privacy of client queries. However, the attack literature has not rigorously investigated techniques to abuse update leakage. In this work, we investigate update leakage under DSSE schemes with forward and backward privacy from the perspective of a passive adversary. We propose two attacks based on a maximum likelihood estimation approach, the UFID Attack and the UF Attack, which target forward-private DSSE schemes with no backward privacy and Level 2 backward privacy, respectively. These are the first attacks to show that it is possible to leverage the frequency and contents of updates to recover client queries. We propose a variant of each attack which allows the update leakage to be combined with search pattern leakage to achieve higher accuracy. We evaluate our attacks against a real-world dataset and show that using update leakage can improve the accuracy of attacks against DSSE schemes, especially those without backward privacy.more » « less
An official website of the United States government

