Falling paper flutters and tumbles through air, whereas a paper airplane glides smoothly if its leading edge is appropriately weighted. We investigate this transformation from ‘plain paper’ to ‘paper plane’ through experiments, aerodynamic modelling and free flight simulations of thin plates with differing centre of mass (CoM) locations. Periodic modes such as fluttering, tumbling and bounding give way to steady gliding and then downward diving as the CoM is increasingly displaced towards one edge. To explain these observations, we formulate a quasi-steady aerodynamic model whose force and torque coefficients are informed by experimental measurements. The dependencies on angle of attack reflect the transition from attached to separated flow and a dynamic centre of pressure, effects that prove critical to reproducing the observed motions of paper planes in air and plates in water. Because the model successfully accounts for unsteady and steady flight modes, it may be usefully applied to further problems involving actuated motions, feedback control and interactions with ambient flows.
more »
« less
This content will become publicly available on July 10, 2026
Aerodynamic equilibria and flight stability of plates at intermediate Reynolds numbers
The passive flight of a thin wing or plate is an archetypal problem in flow–structure interactions at intermediate Reynolds numbers. This seemingly simple aerodynamic system displays an impressive variety of steady and unsteady motions that are familiar from fluttering leaves, tumbling seeds and gliding paper planes. Here, we explore the space of flight behaviours using a nonlinear dynamical model rooted in a quasisteady description of the fluid forces. Efficient characterisation is achieved by identification of the key dimensionless parameters, assessment of the steady equilibrium states and linear analysis of their stability. The structure and organisation of the stable and unstable flight equilibria proves to be complex, and seemingly related factors such as mass and buoyancy-corrected weight play distinct roles in determining the eventual flight patterns. The nonlinear model successfully reproduces previously documented unsteady states such as fluttering and tumbling while also predicting new types of motions, and the linear analysis accurately accounts for the stability of steady states such as gliding and diving. While the conditions for dynamic stability seem to lack tidy formulae that apply universally, we identify relations that hold in certain regimes and which offer mechanistic interpretations. The generality of the model and the richness of its solution space suggest implications for small-scale aerodynamics and related applications in biological and robotic flight.
more »
« less
- Award ID(s):
- 1847955
- PAR ID:
- 10651260
- Publisher / Repository:
- Journal of Fluid Mechanics
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 1014
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this paper, we started by summarizing our recently developed viscous unsteady theory based on coupling potential flow with the triple deck boundary layer theory. This approach provides a viscous extension of potential flow unsteady aerodynamics. As such, a Reynolds- number-dependence could be determined. We then developed a finite-state approximation of such a theory, presenting it in a state space model. This novel nonlinear state space model of the viscous unsteady aerodynamic loads is expected to serve aerodynamicists better than the classical Theodorsen’s model, as it captures viscous effects (i.e., Reynolds number dependence) as well as nonlinearity and additional lag in the lift dynamics; and allows simulation of arbitrary time-varying airfoil motions (not necessarily harmonic). Moreover, being in a state space form makes it quite convenient for simulation and coupling with structural dynamics to perform aeroelasticity, flight dynamics analysis, and control design. We then proceeded to develop a linearization of such a model, which enables analytical results. So, we derived an analytical representation of the viscous lift frequency response function, which is an explicit function of, not only frequency, but also Reynolds number. We also developed a state space model of the linearized response. We finally simulated the nonlinear and linear models to a non- harmonic, small-amplitude pitching maneuver at 100 , 000 Reynolds number and compared the resulting lift and pitching moment with potential flow, in reference to relatively higher fidelity computations of the Unsteady Reynolds-Averaged Navier-Stokes equations.more » « less
-
The atmospheric ablation of meteoroids is a striking example of the reshaping of a solid object due to its motion through a fluid. Motivated by meteorite samples collected on Earth that suggest fixed orientation during flight—most notably the conical shape of so-called oriented meteorites—we hypothesize that such forms result from an aerodynamic stabilization of posture that may be achieved only by specific shapes. Here, we investigate this issue of flight stability in the parallel context of fluid mechanical erosion of clay bodies in flowing water, which yields shapes resembling oriented meteorites. We conduct laboratory experiments on conical objects freely moving through water and fixed within imposed flows to determine the dependence of orientational stability on shape. During free motion, slender cones undergo postural instabilities, such as inversion and tumbling, and broad or dull forms exhibit oscillatory modes, such as rocking and fluttering. Only intermediate shapes, including the stereotypical form carved by erosion, achieve stable orientation and straight flight with apex leading. We corroborate these findings with systematic measurements of torque and stability potentials across cones of varying apex angle, which furnish a complete map of equilibrium postures and their stability. By showing that the particular conical form carved in unidirectional flows is also posturally stable as a free body in flight, these results suggest a self-consistent picture for the origin of oriented meteorites.more » « less
-
We are concerned with free boundary problems arising from the analysis of multidimensional transonic shock waves for the Euler equations in compressible fluid dynamics. In this expository paper, we survey some recent developments in the analysis of multidimensional transonic shock waves and corresponding free boundary problems for the compressible Euler equations and related nonlinear partial differential equations (PDEs) of mixed type. The nonlinear PDEs under our analysis include the steady Euler equations for potential flow, the steady full Euler equations, the unsteady Euler equations for potential flow, and related nonlinear PDEs of mixed elliptic–hyperbolic type. The transonic shock problems include the problem of steady transonic flow past solid wedges, the von Neumann problem for shock reflection–diffraction, and the Prandtl–Meyer problem for unsteady supersonic flow onto solid wedges. We first show how these longstanding multidimensional transonic shock problems can be formulated as free boundary problems for the compressible Euler equations and related nonlinear PDEs of mixed type. Then we present an effective nonlinear method and related ideas and techniques to solve these free boundary problems. The method, ideas, and techniques should be useful to analyze other longstanding and newly emerging free boundary problems for nonlinear PDEs.more » « less
-
Geometric control theory is the application of differential geometry to the study of nonlinear dynamical systems. This control theory permits an analytical study of nonlinear interactions between control inputs, such as symmetry breaking or force and motion generation in unactuated directions. This paper studies the unsteady aerodynamics of a harmonically pitching–plunging airfoil in a geometric control framework. The problem is formulated using the Beddoes–Leishman model, a semi-empirical state space model that characterizes the unsteady lift and drag forces of a two-dimensional airfoil. In combination with the averaging theorem, the application of a geometric control formulation to the problem enables an analytical study of the nonlinear dynamics behind the unsteady aerodynamic forces. The results show lift enhancement when oscillating near stall and thrust generation in the post-stall flight regime, with the magnitude of these force generation mechanisms depending on the parameters of motion. These findings demonstrate the potential of geometric control theory as a heuristic tool for the identification and discovery of unconventional phenomena in unsteady flows.more » « less
An official website of the United States government
