skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Population dynamics of Schrödinger cats
We demonstrate an exact equivalence between classical population dynamics and Lindbladian evolution admitting a dark state and obeying a set of certain local symmetries. We then introduce quantum population dynamics as models in which this local symmetry condition is relaxed. This allows for non-classical processes in which animals behave like Schrödinger’s cat and enter superpositions of live and dead states, thus resulting in coherent superpositions of different population numbers. We develop a field theory treatment of quantum population models as a synthesis of Keldysh and third quantization techniques and draw comparisons to the stochastic Doi-Peliti field theory description of classical population models. We apply this formalism to study a prototypical “Schrödinger cat” population model on ad d -dimensional lattice, which exhibits a phase transition between a dark extinct phase and an active phase that supports a stable quantum population. Using a perturbative renormalization group approach, we find a critical scaling of the Schrödinger cat population distinct from that observed in both classical population dynamics and usual quantum phase transitions.  more » « less
Award ID(s):
2338819
PAR ID:
10651313
Author(s) / Creator(s):
;
Publisher / Repository:
SciPost
Date Published:
Journal Name:
SciPost Physics
Volume:
18
Issue:
2
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${\mathbb {R}}^{d+2}$$ R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In an earlier paper, the authors introduced a harmonic/Coulomb gauge formulation of the problem, and used it to prove small data local well-posedness in dimensions$$d \geqq 4$$ d 4 . In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\geqq 2$$ d 2 . This is achieved by introducing a new, heat gauge formulation of the equations, which turns out to be more robust in low dimensions. 
    more » « less
  2. We advance the characterization of complexity in quantum many-body systems by examiningW W -states embedded in a spin chain. Such states show an amount of non-stabilizerness or “magic”, measured as the Stabilizer Rényi Entropy, that grows logarithmically with the number of qubits/spins. We focus on systems whose Hamiltonian admits a classical point with extensive degeneracy. Near these points, a Clifford circuit can convert the ground state into aW W -state, while in the rest of the phase to which the classical point belongs, it is dressed with local quantum correlations. Topological frustrated quantum spin-chains host phases with the desired phenomenology, and we show that their ground state’s Stabilizer Rényi Entropy is the sum of that of theW W -states plus an extensive local contribution. Our work reveals thatW W -states/frustrated ground states display a non-local degree of complexity that can be harvested as a quantum resource and has no counterpart in GHZ states/non-frustrated systems. 
    more » « less
  3. Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${{\mathbb {R}}}^{d+2}$$ R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\ge 4$$ d 4
    more » « less
  4. Abstract The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$ U 0 over locally confined (width$$L$$ L ) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$ D / λ > 1 in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$ F 2 λ / L 1 ) limit, where$$\lambda = U_{0}^{2} /g$$ λ = U 0 2 / g is the lengthscale of radiating gravity waves and$$D$$ D is the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$ F , is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity. 
    more » « less
  5. Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ C 2 ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ C ħ × -action. First, we find a two-parameter family$$X_{k,l}$$ X k , l of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ Hilb k [ C 2 ] is obtained via direct limit$$l\longrightarrow \infty $$ l and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ ħ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ P 2 with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual. 
    more » « less