Coded elastic computing enables virtual machines to be preempted for high-priority tasks while allowing new virtual machines to join ongoing computation seamlessly. This paper addresses coded elastic computing for matrix-matrix multiplications with straggler tolerance by encoding both storage and download using Lagrange codes. In 2018, Yang et al. introduced the first coded elastic computing scheme for matrix-matrix multiplications, achieving a lower computational load requirement. However, this scheme lacks straggler tolerance and suffers from high upload cost. Zhong et al. (2023) later tackled these shortcomings by employing uncoded storage and Lagrange-coded download. However, their approach requires each machine to store the entire dataset. This paper introduces a new class of elastic computing schemes that utilize Lagrange codes to encode both storage and download, achieving a reduced storage size. The proposed schemes efficiently mitigate both elasticity and straggler effects, with a storage size reduced to a fraction 1/L of Zhong et al.'s approach, at the expense of doubling the download cost. Moreover, we evaluate the proposed schemes on AWS EC2 by measuring computation time under two different tasks allocations: heterogeneous and cyclic assignments. Both assignments minimize computation redundancy of the system while distributing varying computation loads across machines.
more »
« less
This content will become publicly available on June 22, 2026
Uncoded Download in Lagrange-Coded Elastic Computing with Straggler Tolerance
Coded elastic computing, introduced by Yang et al. in 2018, is a technique designed to mitigate the impact of elasticity in cloud computing systems, where machines can be preempted or be added during computing rounds. This approach utilizes maximum distance separable (MDS) coding for both storage and download in matrix-matrix multiplications. The proposed scheme is unable to tolerate stragglers and has high encoding complexity and upload cost. In 2023, we addressed these limitations by employing uncoded storage and Lagrange-coded download. However, it results in a large storage size. To address the challenges of storage size and upload cost, in this paper, we focus on Lagrange-coded elastic computing based on uncoded download. We propose a new class of elastic computing schemes, using Lagrange-coded storage with uncoded download (LCSUD). Our proposed schemes address both elasticity and straggler challenges while achieving lower storage size, reduced encoding complexity, and upload cost compared to existing methods.
more »
« less
- Award ID(s):
- 2145835
- PAR ID:
- 10651329
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In cloud computing systems, elastic events and stragglers increase the uncertainty of the system, leading to computation delays. Coded elastic computing (CEC) introduced by Yang et al. in 2018 is a framework which mitigates the impact of elastic events using Maximum Distance Separable (MDS) coded storage. It proposed a CEC scheme for both matrix-vector multiplication and general matrix-matrix multiplication applications. However, in these applications, the proposed CEC scheme cannot tolerate stragglers due to the limitations imposed by MDS codes. In this paper we propose a new elastic computing scheme using uncoded storage and Lagrange coded computing approaches. The proposed scheme can effectively mitigate the effects of both elasticity and stragglers. Moreover, it produces a lower complexity and smaller recovery threshold compared to existing coded storage based schemes.more » « less
-
Elasticity is one important feature in modern cloud computing systems and can result in computation failure or significantly increase computing time. Such elasticity means that virtual machines over the cloud can be preempted under a short notice (e.g., hours or minutes) if a high-priority job appears; on the other hand, new virtual machines may become available over time to compensate the computing resources. Coded Storage Elastic Computing (CSEC) introduced by Yang et al. in 2018 is an effective and efficient approach to overcome the elasticity and it costs relatively less storage and computation load. However, one of the limitations of the CSEC is that it may only be applied to certain types of computations (e.g., linear) and may be challenging to be applied to more involved computations because the coded data storage and approximation are often needed. Hence, it may be preferred to use uncoded storage by directly copying data into the virtual machines. In addition, based on our own measurement, virtual machines on Amazon EC2 clusters often have heterogeneous computation speed even if they have exactly the same configurations (e.g., CPU, RAM, I/O cost). In this paper, we introduce a new optimization framework on Uncoded Storage Elastic Computing (USEC) systems with heterogeneous computing speed to minimize the overall computation time. Under this framework, we propose optimal solutions of USEC systems with or without straggler tolerance using different storage placements. Our proposed algorithms are evaluated using power iteration applications on Amazon EC2.more » « less
-
Stragglers, Byzantine workers, and data privacy are the main bottlenecks in distributed cloud computing. Some prior works proposed coded computing strategies to jointly address all three challenges. They require either a large number of workers, a significant communication cost or a significant computational complexity to tolerate Byzantine workers. Much of the overhead in prior schemes comes from the fact that they tightly couple coding for all three problems into a single framework. In this paper, we propose Adaptive Verifiable Coded Computing (AVCC) framework that decouples the Byzantine node detection challenge from the straggler tolerance. AVCC leverages coded computing just for handling stragglers and privacy, and then uses an orthogonal approach that leverages verifiable computing to mitigate Byzantine workers. Furthermore, AVCC dynamically adapts its coding scheme to trade-off straggler tolerance with Byzantine protection. We evaluate AVCC on a compute-intensive distributed logistic regression application. Our experiments show that AVCC achieves up to 4.2× speedup and up to 5.1% accuracy improvement over the state-of-the-art Lagrange coded computing approach (LCC). AVCC also speeds up the conventional uncoded implementation of distributed logistic regression by up to 7.6×, and improves the test accuracy by up to 12.1%.more » « less
-
Private information retrieval (PIR) allows a user to retrieve a desired message out of K possible messages from N databases (DBs) without revealing the identity of the desired message. In this work, we consider the problem of PIR from uncoded storage constrained DBs. Each DB has a storage capacity of μKL bits, where L is the size of each message in bits, and μ ∈ [1/N, 1] is the normalized storage. In the storage constrained PIR problem, there are two key challenges: a) construction of communication efficient schemes through storage content design at each DB that allow download efficient PIR; and b characterizing the optimal download cost via information-theoretic lower bounds. The novel aspect of this work is to characterize the optimum download cost of PIR with storage constrained DBs for any value of storage. In particular, for any (N, K), we show that the optimal tradeoff between storage (μ) and the download cost (D(μ)) is given by the lower convex hull of the pairs ([t/N](1+[1/t]+[1/(t 2 )]+...+[1/(t K-1 )])) for t = 1,2, ..., N. The main contribution of this paper is the converse proof, i.e., obtaining lower bounds on the download cost for PIR as a function of the available storage.more » « less
An official website of the United States government
