skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal Graph Fuzzing for Fair ML Sofware Development
Not AvailableMachine learning (ML) is increasingly used in high-stakes areas like autonomous driving, finance, and criminal justice. However, it often unintentionally perpetuates biases against marginalized groups. To address this, the software engineering community has developed fairness testing and debugging methods, establishing best practices for fair ML software. These practices focus on training model design, including the selection of sensitive and non-sensitive attributes and hyperparameter configuration. However, the application of these practices across different socio-economic and cultural contexts is challenging, as societal constraints vary. Our study proposes a search-based software engineering approach to evaluate the robustness of these fairness practices. We formulate these practices as the first-order logic properties and search for two neighborhood datasets where the practice satisfies in one dataset, but fail in the other one. Our key observation is that these practices should be general and robust to various uncertainty such as noise, faulty labeling, and demographic shifts. To generate datasets, we sift to the causal graph representations of datasets and apply perturbations over the causal graphs to generate neighborhood datasets. In this short paper, we show our methodology using an example of predicting risks in the car insurance application.  more » « less
Award ID(s):
2317207
PAR ID:
10651337
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
402 to 403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper we propose a causal modeling approach to intersectional fairness, and a flexible, task-specific method for computing intersectionally fair rankings. Rankings are used in many contexts, ranging from Web search to college admissions, but causal inference for fair rankings has received limited attention. Additionally, the growing literature on causal fairness has directed little attention to intersectionality. By bringing these issues together in a formal causal framework we make the application of intersectionality in algorithmic fairness explicit, connected to important real world effects and domain knowledge, and transparent about technical limitations. We experimentally evaluate our approach on real and synthetic datasets, exploring its behavior under different structural assumptions. 
    more » « less
  2. Data-driven software is increasingly being used as a critical component of automated decision-support systems. Since this class of software learns its logic from historical data, it can encode or amplify discriminatory practices. Previous research on algorithmic fairness has focused on improving “average-case” fairness. On the other hand, fairness at the extreme ends of the spectrum, which often signifies lasting and impactful shifts in societal attitudes, has received significantly less emphasis. Leveraging the statistics of extreme value theory (EVT), we propose a novel fairness criterion called extreme counterfactual discrimination (ECD). This criterion estimates the worst-case amounts of disadvantage in outcomes for individuals solely based on their memberships in a protected group. Utilizing tools from search-based software engineering and generative AI, we present a randomized algorithm that samples a statistically significant set of points from the tail of ML outcome distributions even if the input dataset lacks a sufficient number of relevant samples. We conducted several experiments on four ML models (deep neural networks, logistic regression, and random forests) over 10 socially relevant tasks from the literature on algorithmic fairness. First, we evaluate the generative AI methods and find that they generate sufficient samples to infer valid EVT distribution in 95% of cases. Remarkably, we found that the prevalent bias mitigators reduce the average-case discrimination but increase the worst-case discrimination significantly in 35% of cases. We also observed that even the tail-aware mitigation algorithm—MiniMax-Fairness—increased the worst-case discrimination in 30% of cases. We propose a novel ECD-based mitigator that improves fairness in the tail in 90% of cases with no degradation of the average-case discrimination. We hope that the EVT framework serves as a robust tool for evaluating fairness in both average-case and worst-case discrimination. 
    more » « less
  3. Fairness-aware machine learning has attracted a surge of attention in many domains, such as online advertising, personalized recommendation, and social media analysis in web applications. Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age. Among many existing fairness notions, counterfactual fairness is a popular notion defined from a causal perspective. It measures the fairness of a predictor by comparing the prediction of each individual in the original world and that in the counterfactual worlds in which the value of the sensitive attribute is modified. A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data. However, in real-world scenarios, the underlying causal model is often unknown, and acquiring such human knowledge could be very difficult. In these scenarios, it is risky to directly trust the causal models obtained from information sources with unknown reliability and even causal discovery methods, as incorrect causal models can consequently bring biases to the predictor and lead to unfair predictions. In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE. Specifically, under certain general assumptions, CLAIRE effectively mitigates the biases from the sensitive attribute with a representation learning framework based on counterfactual data augmentation and an invariant penalty. Experiments conducted on both synthetic and real-world datasets validate the superiority of CLAIRE in both counterfactual fairness and prediction performance. 
    more » « less
  4. Extensive efforts have been made to understand and improve the fairness of machine learning models based on observational metrics, especially in high-stakes domains such as medical insurance, education, and hiring decisions. However, there is a lack of certified fairness considering the end-to-end performance of an ML model. In this paper, we first formulate the certified fairness of an ML model trained on a given data distribution as an optimization problem based on the model performance loss bound on a fairness constrained distribution, which is within bounded distributional distance with the training distribution. We then propose a general fairness certification framework and instantiate it for both sensitive shifting and general shifting scenarios. In particular, we propose to solve the optimization problem by decomposing the original data distribution into analytical subpopulations and proving the convexity of the subproblems to solve them. We evaluate our certified fairness on six real-world datasets and show that our certification is tight in the sensitive shifting scenario and provides non-trivial certification under general shifting. Our framework is flexible to integrate additional non-skewness constraints and we show that it provides even tighter certification under different real-world scenarios. We also compare our certified fairness bound with adapted existing distributional robustness bounds on Gaussian data and demonstrate that our method is significantly tighter. 
    more » « less
  5. A recent trend of fair machine learning is to define fairness as causality-based notions which concern the causal connection between protected attributes and decisions. However, one common challenge of all causality-based fairness notions is identifiability, i.e., whether they can be uniquely measured from observational data, which is a critical barrier to applying these notions to real-world situations. In this paper, we develop a framework for measuring different causality-based fairness. We propose a unified definition that covers most of previous causality-based fairness notions, namely the path-specific counterfactual fairness (PC fairness). Based on that, we propose a general method in the form of a constrained optimization problem for bounding the path-specific counterfactual fairness under all unidentifiable situations. Experiments on synthetic and real-world datasets show the correctness and effectiveness of our method. 
    more » « less