RR Lyrae stars toward the Galactic bulge are used to investigate whether this old stellar population traces the Galactic bar. Although the bar is known to dominate the mass in the inner Galaxy, there is no consensus on whether the RR Lyrae star population, which constitutes some of the most ancient stars in the bulge and thus traces the earliest epochs of star formation, contributes to the barred bulge. We create new reddening maps and derive new extinction laws from visual to near-infrared passbands using improved RR Lyrae period-absolute magnitude-metallicity relations, enabling distance estimates for individual bulge RR Lyrae variables. The extinction law is most uniform inRIKsandRJKsand the distances to individual RR Lyrae based on these colors are determined with an accuracy of 6 and 4%, respectively. Using only the near-infrared passbands for distance estimation, we infer the distance to the Galactic center equal todcenJKs= 8217 ± 1(stat) ± 528(sys) pc after geometrical correction. We show that variations in the extinction law toward the Galactic bulge can mimic a barred spatial distribution in the bulge RR Lyrae star population in visual passbands. This arises from a gradient in extinction differences along Galactic longitudes and latitudes, which can create the perception of the Galactic bar, particularly when using visual passband-based distances. A barred angle in the RR Lyrae spatial distribution disappears when near-infrared passband-based distances are used, as well as when reddening law variations are incorporated in visual passband-based distances. The prominence of the bar, traced by RR Lyrae stars, depends on their metallicity, with metal-poor RR Lyrae stars ([Fe/H] < −1.0 dex) showing little to no tilt with respect to the bar. Metal-rich ([Fe/H] > −1.0 dex) RR Lyrae stars do show a barred bulge signature in spatial properties derived using near-infrared distances, with an angle ofι= 18 ± 5 deg, consistent with previous bar measurements from the literature. This also hints at a younger age for this RR Lyrae subgroup. The 5D kinematic analysis, primarily based on transverse velocities, indicates a rotational lag in RR Lyrae stars compared to red clump giants. Despite variations in the extinction law, our kinematic conclusions are robust across different distance estimation methods.
more »
« less
This content will become publicly available on July 1, 2026
The Galactic bulge exploration: V. The secular spherical and X-shaped Milky Way bulge
In this work, we derive systemic velocities for 8456 RR Lyrae stars. This is the largest dataset of these variables in the Galactic bulge to date. In combination withGaiaproper motions, we computed their orbits using an analytical gravitational potential similar to that of the Milky Way (MW) and identified interlopers from other MW structures, which amount to 22% of the total sample. Our analysis revealed that most interlopers are associated with the halo, and the remainder are linked to the Galactic disk. We confirm the previously reported lag in the rotation curve of bulge RR Lyrae stars, regardless of the removal of interlopers. The rotation patterns of metal-rich RR Lyrae stars are consistent with the pattern of nonvariable metal-rich giants, following the MW bar, while metal-poor stars rotate more slowly. The analysis of the orbital parameter space was used to distinguish bulge stars that in the bar reference frame have prograde orbits from those on retrograde orbits. We classified the prograde stars into orbital families and estimated the chaoticity (in the form of the frequency drift, log ΔΩ) of their orbits. RR Lyrae stars with banana-like orbits have a bimodal distance distribution, similar to the distance distribution seen in metal-rich red clump stars. The fraction of stars with banana-like orbits decreases linearly with metallicity, as does the fraction of stars on prograde orbits (in the bar reference frame). The retrograde-moving stars (in the bar reference frame) form a centrally concentrated nearly spherical distribution. From analyzing anN-body+SPH simulation, we found that some stellar particles in the central parts oscillate between retrograde and prograde orbits and that only a minority stays prograde over a long period of time. Based on the simulation, the ratio of prograde and retrograde stellar particles seems to stabilize within some gigayears after the bar formation. The nonchaoticity of retrograde orbits and their high numbers can explain some of the spatial and kinematical features of the MW bulge that have been often associated with a classical bulge.
more »
« less
- Award ID(s):
- 2009836
- PAR ID:
- 10651361
- Publisher / Repository:
- Astronomy & Astrophysics, Volume 699, id.A349, 30 pp.
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 699
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A349
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
RR Lyrae stars are recognized as some of the oldest stars in the Universe. In addition, they are some of the few old celestial objects for which distances can be reliably inferred. As such, these stars are excellent tracers of the oldest structures that exist in the inner Galaxy. Although the inner Galaxy is where the oldest structures in the Milky Way are thought to be hidden, it is also a region notoriously difficult to study due to high extinction and crowding. Here, I will summarize how RR Lyrae stars have been used to obtain a more complete picture of the inner Galaxy. In particular, recently, a large sample of RR Lyrae star motions through space have been obtained and compared to younger, more metal-rich stars in the bulge/bar. It is seen that the inner Galaxy RR Lyrae star kinematics are complicated by a mix of a variety of Galactic components. After isolating only those RR Lyrae stars that are confined to the bulge, a subsample of these stars have slower rotation and are less barred than the dominant bar/bulge. Curiously, there is no discernible metallicity [Fe/H] difference between these two subsamples. Old, metal-poor stars in the inner Galaxy need to be properly accounted for when discussing processes that gave rise to the formation of the inner Galaxy and the Galactic bar/bulge.more » « less
-
Abstract We present a view of the stellar halo in the inner-central regions of the Milky Way (R≲ 10 kpc) mapped by RR Lyrae stars. The combined BRAVA-RR/APOGEE RR Lyrae catalog is used to obtain a sample of 281 RR Lyrae stars located in the bulge region of the Galaxy, but with orbits indicating they belong to the inner-central halo. The RR Lyrae stars in the halo are more metal-poor than the bulge RR Lyrae stars and have pulsation properties more consistent with an accreted population. We use the Milky Way-like zoom-in cosmological simulation Auriga to compare the properties of the RR Lyrae stars to those expected from the “Gaia-Enceladus-Sausage” (GES) merger. The integrals of motions and eccentricities of the RR Lyrae stars are consistent with a small fraction of 6–9% ± 2% of the inner-central halo RR Lyrae population having originated from GES. This fraction, lower than what is seen in the solar neighborhood, is consistent with trends seen in the Auriga simulation, where a GES-like merger would have a decreasing fraction of GES stars at small Galactocentric radii compared to other accreted populations. Very few of the Auriga inner Galaxy GES-18 particles have properties consistent with belonging to a bulge population with (zmax< 1.1 kpc), indicating that no (or very few) RR Lyrae stars with bulge orbits should have originated from GES.more » « less
-
null (Ed.)ABSTRACT In hierarchical structure formation, metal-poor stars in and around the Milky Way (MW) originate primarily from mergers of lower mass galaxies. A common expectation is therefore that metal-poor stars should have isotropic, dispersion-dominated orbits that do not correlate strongly with the MW disc. However, recent observations of stars in the MW show that metal-poor ($$\rm {[Fe/H]}\lesssim -2$$) stars are preferentially on prograde orbits with respect to the disc. Using the Feedback In Realistic Environments 2 (FIRE-2) suite of cosmological zoom-in simulations of MW/M31-mass galaxies, we investigate the prevalence and origin of prograde metal-poor stars. Almost all (11 of 12) of our simulations have metal-poor stars on preferentially prograde orbits today and throughout most of their history: we thus predict that this is a generic feature of MW/M31-mass galaxies. The typical prograde-to-retrograde ratio is ∼2:1, which depends weakly on stellar metallicity at $$\rm {[Fe/H]}\lesssim -1$$. These trends predicted by our simulations agree well with MW observations. Prograde metal-poor stars originate largely from a single Large/Small Magellanic Cloud (LMC/SMC)-mass gas-rich merger $$7\!-\!12.5\, \rm {Gyr}$$ ago, which deposited existing metal-poor stars and significant gas on an orbital vector that sparked the formation of and/or shaped the orientation of a long-lived stellar disc, giving rise to a prograde bias for all low-metallicity stars. We find subdominant contributions from in situ stars formed in the host galaxy before this merger, and in some cases, additional massive mergers. We find few clear correlations between any properties of our MW/M31-mass galaxies at z = 0 and the degree of this prograde bias as a result of diverse merger scenarios.more » « less
-
Context.The inner Galaxy is a complex environment, and the relative contributions of different formation scenarios to its observed morphology and stellar properties are still debated. The different components are expected to have different spatial, kinematic, and metallicity distributions, and a combination of photometric, spectroscopic, and astrometric large-scale surveys is needed to study the formation and evolution of the Galactic bulge. Aims.The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for approximately 250 million unique stars over more than 200 square degrees of the southern Galactic bulge. By combining BDBS photometry with the latestGaiaastrometry, we aim to characterize the chemodynamics of red clump stars across the BDBS footprint using an unprecedented sample size and sky coverage. Methods.Our field of view of interest is |ℓ| ≤ 10°, −10° ≤b ≤ −3°. We constructed a sample of approximately 2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. Photometric metallicities are derived from a (u − i)0versus [Fe/H] relation; astrometry, including precise proper motions, is from the third data release (DR3) of the ESA satelliteGaia. We studied the kinematics of the red clump stars as a function of sky position and metallicity by investigating proper-motion rotation curves, velocity dispersions, and proper-motion correlations across the southern Galactic bulge. Results.By binning our sample into eight metallicity bins in the range of −1.5 dex < [Fe/H] < +1 dex, we find that metal-poor red clump stars exhibit lower rotation amplitudes, at ∼29 km s−1kpc−1. The peak of the angular velocity is ∼39 km s−1kpc−1for [Fe/H] ∼ −0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] ≳ −0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitudeℓ = 0. Conclusions.This work describes the largest sample of bulge stars with distance, metallicity, and astrometry reported to date, and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity, and, for the first time, kinematic differences for stars with [Fe/H]> − 0.5, suggesting that the bar itself may have kinematics that depends on metallicity.more » « less
An official website of the United States government
