skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Time-Series Data-Driven Machine Learning of Milling Chattering
Abstract Milling is a critical manufacturing process to produce high-value components in aerospace, tooling, and automotive industries. However, milling is prone to chatter, a severe vibration that damages surface quality, cutting tools, and machines. Traditional experimental and mechanistic methods of chatter prediction have significant limitations. This study presents a data-driven machine learning (ML) model to predict and quantify milling chatter directly based on time-series vibration data. Three ML models, including hybrid long short-term memory (LSTM)—fully convolutional network (FCN) model, gated recurrent unit (GRU)—FCN model, and temporal convolutional network (TCN) models, have been developed and verified by incorporating milling parameters to enhance prediction accuracy and stability. Among the proposed models, the best-performing ML model (GRU-FCN) demonstrates strong performance in chatter prediction and severity quantification, providing actionable insights with improved computational efficiency. The integration of milling parameters into the ML model notably enhances the prediction accuracy and stability, proving particularly effective in real-time monitoring scenarios.  more » « less
Award ID(s):
2040358
PAR ID:
10651391
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
147
Issue:
10
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a sample partitioning approach to retain or reject samples from an initial distribution of stability maps using milling test results. The stability maps are calculated using distributions of uncertain modal parameters that represent the tool tip frequency response functions and cutting force model coefficients. Test points for sample partitioning are selected using either (1) the combination of spindle speed and mean axial depth from the available samples that provides the high material removal rate, or (2) a spindle speed based on the chatter frequency and mean axial depth at that spindle speed. The latter is selected when an unstable (chatter) result is obtained from a test. Because the stability model input parameters are also partitioned using the test results, their uncertainty is reduced using a limited number of tests and the milling stability model accuracy is increased. A case study is provided to evaluate the algorithm. 
    more » « less
  2. Trochoidal milling is an alternative path planning strategy with the potential of increasing material removal rate per unit of tool wear and therefore productivity cost while reducing cutting energy and improving tool performance. These characteristics in addition to low radial immersion of the tool make trochoidal milling a desirable tool path in machining difficult-to-cut alloys such as nickel-based superalloys. The objective of this work is to study the dynamic stability of trochoidal milling and investigate the interaction of tool path parameters with stability behavior when machining IN718 superalloy. While there exist a few published works on dynamics of circular milling (an approximated tool path for trochoidal milling), this work addresses the dynamics of the actual trochoidal tool path. First, the chip geometry quantification strategy is explained, then the chatter characteristic equation in trochoidal milling is formulated, and chatter stability lobes are generated. It is shown that unlike a conventional end-milling operation where the geometry of chips remains constant during the cut (resulting in a single chatter diagram representing the stability region), trochoidal milling chatter diagrams evolve in time with the change in geometry (plus cutter entering and exiting angles) of each chip. The limit of the critical depth of cut is compared with conventional end milling and shown that the depth of cut can be increased up to ten times while preserving stability. Finally, the displacement response of the cutting tool is simulated in the time domain for stable and unstable cutting regions; numerical simulation and theoretical results are compared. 
    more » « less
  3. Recently, a multi-agent based network automation architecture has been proposed. The architecture is named multi-agent based network automation of the network management system (MANA-NMS). The architectural framework introduced atomized network functions (ANFs). ANFs should be autonomous, atomic, and intelligent agents. Such agents should be implemented as an independent decision element, using machine/deep learning (ML/DL) as an internal cognitive and reasoning part. Using these atomic and intelligent agents as a building block, a MANA-NMS can be composed using the appropriate functions. As a continuation toward implementation of the architecture MANA-NMS, this paper presents a network traffic prediction agent (NTPA) and a network traffic classification agent (NTCA) for a network traffic management system. First, an NTPA is designed and implemented using DL algorithms, i.e., long short-term memory (LSTM), gated recurrent unit (GRU), multilayer perceptrons (MLPs), and convolutional neural network (CNN) algorithms as a reasoning and cognitive part of the agent. Similarly, an NTCA is designed using decision tree (DT), K-nearest neighbors (K-NN), support vector machine (SVM), and naive Bayes (NB) as a cognitive component in the agent design. We then measure the NTPA prediction accuracy, training latency, prediction latency, and computational resource consumption. The results indicate that the LSTM-based NTPA outperforms compared to GRU, MLP, and CNN-based NTPA in terms of prediction accuracy, and prediction latency. We also evaluate the accuracy of the classifier, training latency, classification latency, and computational resource consumption of NTCA using the ML models. The performance evaluation shows that the DT-based NTCA performs the best. 
    more » « less
  4. Freezing of wind turbines causes loss of wind-generated power. Forecasting or prediction of icing on wind turbine blades based on SCADA sensor data allows taking appropriate actions before icing occurs. This paper presents a newly developed deep learning network model named PCTG (Parallel CNN-TCN GRU) for the purpose of high-accuracy and long-term prediction of icing on wind turbine blades. This model combines three networks, the CNN, TCN, and GRU, in order to incorporate both the temporal aspect of SCADA time-series data as well as the dependencies of SCADA variables. The experimentations conducted by using this model and SCADA data from three wind turbines in a wind farm have generated average prediction accuracies of about 97% for prediction horizons of up to 2 days ahead. The developed model is shown to maintain at least 95% prediction accuracy for long prediction horizons of up to 22 days ahead. Furthermore, for another wind farm SCADA dataset, it is shown that the developed PCTG model achieves over 99% icing prediction accuracy 10 days ahead. 
    more » « less
  5. Abstract Modern data mining techniques using machine learning (ML) and deep learning (DL) algorithms have been shown to excel in the regression-based task of materials property prediction using various materials representations. In an attempt to improve the predictive performance of the deep neural network model, researchers have tried to add more layers as well as develop new architectural components to create sophisticated and deep neural network models that can aid in the training process and improve the predictive ability of the final model. However, usually, these modifications require a lot of computational resources, thereby further increasing the already large model training time, which is often not feasible, thereby limiting usage for most researchers. In this paper, we study and propose a deep neural network framework for regression-based problems comprising of fully connected layers that can work with any numerical vector-based materials representations as model input. We present a novel deep regression neural network, iBRNet, with branched skip connections and multiple schedulers, which can reduce the number of parameters used to construct the model, improve the accuracy, and decrease the training time of the predictive model. We perform the model training using composition-based numerical vectors representing the elemental fractions of the respective materials and compare their performance against other traditional ML and several known DL architectures. Using multiple datasets with varying data sizes for training and testing, We show that the proposed iBRNet models outperform the state-of-the-art ML and DL models for all data sizes. We also show that the branched structure and usage of multiple schedulers lead to fewer parameters and faster model training time with better convergence than other neural networks. Scientific contribution: The combination of multiple callback functions in deep neural networks minimizes training time and maximizes accuracy in a controlled computational environment with parametric constraints for the task of materials property prediction. 
    more » « less