skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Energy Injection in an Epithelial Cell Monolayer Indicated by Negative Viscosity
Epithelial tissues are driven out of thermodynamic equilibrium by internally generated forces, causing complex patterns of motion. Even when both the forces and motion are measurable, it is not yet possible to relate the two, because the sources of energy injection and dissipation are often unclear. Here, we study how energy is transferred by developing a method to measure the effective viscosity from the shear stresses and strain rates within an epithelial cell monolayer. Interestingly, there emerged multicellular regions in which the relationship between shear stress and shear strain rate was negatively proportional, indicating a negative effective viscosity. The negative effective viscosity occurred in regions wherein cell stresses were less efficient at producing tissue deformations compared to regions of positive effective viscosity. Regions of negative effective viscosity consistently exhibited greater cell speed and vorticity, and the cells had elevated metabolic activity, reflecting an increased energy demand in these cells. Our study shows that negative effective viscosity is a useful means of quantifying the flow of energy in living matter.  more » « less
Award ID(s):
2205141
PAR ID:
10651485
Author(s) / Creator(s):
;
Publisher / Repository:
PRX Life
Date Published:
Journal Name:
PRX Life
Volume:
3
Issue:
4
ISSN:
2835-8279
Page Range / eLocation ID:
043017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Maini, Philip K (Ed.)
    Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration. Epithelial (MCF10A) cell clusters adhered tosoftsubstrates with aligned collagen fibers (AF) migrate faster with much lesser traction forces, compared to random fibers (RF). Fiber alignment causes higher motility waves and transmission of normal stresses deeper into cell monolayer while minimizing shear stresses and increased cell-division based fluidization. By contrast, fiber randomization induces cellular jamming due to breakage in motility waves, disrupted transmission of normal stresses, and heightened shear driven flow. Using a novel motor-clutch model, we explain that such ‘force-effective’ fast migration phenotype occurs due to rapid stabilization of contractile forces at the migrating front, enabled by higher frictional forces arising from simultaneous compressive loading of parallel fiber-substrate connections. We also model ‘haptotaxis’ to show that increasing ligand connectivity (but not continuity) increases migration efficiency. According to our model, increased rate of front stabilization via higher resistance to substrate deformation is sufficient to capture ‘durotaxis’. Thus, our findings reveal a new paradigm wherein the rate of leading-edge stabilization determines the efficiency of supracellular collective cell migration. 
    more » « less
  2. Cellular unjamming is the collective fluidization of cell motion and has been linked to many biological processes, including development, wound repair, and tumor growth. In tumor growth, the uncontrolled proliferation of cancer cells in a confined space generates mechanical compressive stress. However, because multiple cellular and molecular mechanisms may be operating simultaneously, the role of compressive stress in unjamming transitions during cancer progression remains unknown. Here, we investigate which mechanism dominates in a dense, mechanically stressed monolayer. We find that long-term mechanical compression triggers cell arrest in benign epithelial cells and enhances cancer cell migration in transitions correlated with cell shape, leading us to examine the contributions of cell–cell adhesion and substrate traction in unjamming transitions. We show that cadherin-mediated cell–cell adhesion regulates differential cellular responses to compressive stress and is an important driver of unjamming in stressed monolayers. Importantly, compressive stress does not induce the epithelial–mesenchymal transition in unjammed cells. Furthermore, traction force microscopy reveals the attenuation of traction stresses in compressed cells within the bulk monolayer regardless of cell type and motility. As traction within the bulk monolayer decreases with compressive pressure, cancer cells at the leading edge of the cell layer exhibit sustained traction under compression. Together, strengthened intercellular adhesion and attenuation of traction forces within the bulk cell sheet under compression lead to fluidization of the cell layer and may impact collective cell motion in tumor development and breast cancer progression. 
    more » « less
  3. During embryonic morphogenesis, tissues undergo dramatic deformations in order to form functional organs. Similarly, in adult animals, living cells and tissues are continually subjected to forces and deformations. Therefore, the success of embryonic development and the proper maintenance of physiological functions rely on the ability of cells to withstand mechanical stresses as well as their ability to flow in a collective manner. During these events, mechanical perturbations can originate from active processes at the single-cell level, competing with external stresses exerted by surrounding tissues and organs. However, the study of tissue mechanics has been somewhat limited to either the response to external forces or to intrinsic ones. In this work, we use an active vertex model of a 2D confluent tissue to study the interplay of external deformations that are applied globally to a tissue with internal active stresses that arise locally at the cellular level due to cell motility. We elucidate, in particular, the way in which this interplay between globally external and locally internal active driving determines the emergent mechanical properties of the tissue as a whole. For a tissue in the vicinity of a solid-fluid jamming or unjamming transition, we uncover a host of fascinating rheological phenomena, including yielding, shear thinning, continuous shear thickening, and discontinuous shear thickening. These model predictions provide a framework for understanding the recently observed nonlinear rheological behaviors in vivo. 
    more » « less
  4. Olivine lattice preferred orientation (LPO), or texture, forms in relation to deformation mechanisms such as dislocation creep and can be observed in the upper mantle as seismic anisotropy. Olivine is also mechanically anisotropic, meaning that it responds to stresses differently depending on the direction of the stress. Understanding the interplay between anisotropic viscosity (AV) and LPO, and their role in deformation, is necessary for relating seismic anisotropy to mantle flow patterns. In this study, we employ three methods to predict olivine texture (D-Rex, MDM, and MDM+AV) in a shear box model and a subduction model. D-Rex and MDM are two representative texture development methods that have been compared before, and our results are in line with previous studies showing that textures computed by D-Rex develop faster and are stronger and more point-like than textures calculated with MDM. MDM+AV uses the same isotropic mantle stresses and particle paths as D-Rex and MDM but includes the effect of AV for texture predictions. MDM+AV predicts a texture similar to MDM with a distinct girdle-like orientation for simple shear deformation or at low strain in the subduction model. At larger strains, MDM+AV’s textures are more point-like and stronger compared to the other two methods. The effective viscosity for MDM+AV drops by up to 60% in a shear box model and can be either strengthened or weakened relative to isotropic viscosity for different regions of the subduction model experiencing different patterns of deformation. Our results emphasize the significant role of AV in olivine texture development, which could substantially affect geodynamic processes in the upper mantle. 
    more » « less
  5. Ice at depth in ice-stream shear margins is thought to commonly be temperate, with interstitial meltwater that softens ice. Models that include this softening extrapolate results of a single experimental study in which ice effective viscosity decreased by a factor of ∼3 over water contents of ∼0.01–0.8%. Modeling indicates this softening by water localizes strain in shear margins and through shear heating increases meltwater at the bed, enhancing basal slip. To extend data to higher water contents, we shear lab-made ice in confined compression with a large ring-shear device. Ice rings with initial mean grain sizes of 2–4 mm are kept at the pressure-melting temperature and sheared at controlled rates with peak stresses of ∼0.06–0.20 MPa, spanning most of the estimated shear-stress range in West Antarctic shear margins. Final mean grain sizes are 8–13 mm. Water content is measured by inducing a freezing front at the ice-ring edges, tracking its movement inward with thermistors, and fitting the data with solutions of the relevant Stefan problem. Results indicate two creep regimes, below and above a water content of ∼0.6%. Comparison of effective viscosity values in secondary creep with those of tertiary creep from the earlier experimental study indicate that for water contents of 0.2–0.6%, viscosity in secondary creep is about twice as sensitive to water content than for ice sheared to tertiary creep. Above water contents of 0.6%, viscosity values in secondary creep are within 25% of those of tertiary creep, suggesting a stress-limiting mechanism at water contents greater than 0.6% that is insensitive to ice fabric development in tertiary creep. At water contents of ∼0.6–1.7%, effective viscosity is independent of water content, and ice is nearly linear-viscous. Minimization of intercrystalline stress heterogeneity by grain-scale melting and refreezing at rates that approach an upper bound as grain-boundary water films thicken might account for the two regimes. 
    more » « less