skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiple time scale optimization explains functional trait responses to leaf water potential
Summary Plant response to water stress involves multiple timescales. In the short term, stomatal adjustments optimize some fitness function commonly related to carbon uptake, while in the long term, traits including xylem resilience are adjusted. These optimizations are usually considered independently, the former involving stomatal aperture and the latter carbon allocation. However, short‐ and long‐term adjustments are interdependent, as ‘optimal’ in the short term depends on traits set in the longer term.An economics framework is used to optimize long‐term traits that impact short‐term stomatal behavior. Two traits analyzed here are the resilience of xylem and the resilience of nonstomatal limitations (NSLs) to photosynthesis at low‐water potentials.Results show that optimality requires xylem resilience to increase with climatic aridity. Results also suggest that the point at which xylem reach 50% conductance and the point at which NSLs reach 50% capacity are constrained to approximately a 2 : 1 linear ratio; however, this awaits further experimental verification.The model demonstrates how trait coordination arises mathematically, and it can be extended to many other traits that cross timescales. With further verification, these results could be used in plant modelling when information on plant traits is limited.  more » « less
Award ID(s):
2028633
PAR ID:
10651508
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
The New Phytologist Foundation
Date Published:
Journal Name:
New Phytologist
Volume:
244
Issue:
2
ISSN:
0028-646X
Page Range / eLocation ID:
426 to 435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance.To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre‐ and posthurricane periods. We also assessed correlations between traits and growth rates.While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates.Ultimately, within‐individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Summary The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil–plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration.We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil–plant conductance in the highly embolism‐resistant speciesCallitris tuberculatausing continuous dendrometer measurements of leaf water potential during drought.We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil–plant hydraulic pathway and xylem embolism spread.We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration. 
    more » « less
  3. Summary The Cretaceous–Cenozoic expansion of tropical forests created canopy space that was subsequently occupied by diverse epiphytic communities including Eupolypod ferns. Eupolypods proliferated in this more stressful niche, where lower competition enabled the adaptive radiation of thousands of species. Here, we examine whether xylem traits helped shape the Cenozoic radiation of Eupolypod ferns.We characterized the petiole xylem anatomy of 39 species belonging to the Eupolypod I and Eupolypod II clades occupying the epiphytic, hemiepiphytic, and terrestrial niche, and we assessed vulnerability to embolism in a subset of species.The transition to the canopy was associated with reduced xylem content and smaller tracheid diameters, but no differences were found in species vulnerability to embolism and pit membrane thickness. Phylogenetic analyses support selection for traits associated with reduced water transport in Eupolypod 1 species.We posit that in Eupolypod epiphytes, selection favored water retention via thicker leaves and lower stomatal density over higher rates of water transport. Consequently, lower leaf water loss was coupled with smaller quantities of xylem and narrower tracheid diameters. Traits associated with water conservation were evident in terrestrial Eupolypod 1 ferns and may have predisposed this clade toward radiation in the canopy. 
    more » « less
  4. Abstract In semi‐arid regions where drought and wildfire events often co‐occur, such as in Southern California chaparral, relationships between plant hydration, drought‐ and fire‐adapted traits may explain landscape‐scale wildfire dynamics. To examine these patterns, fire scientists and plant physiologists quantify hydration in plants via mass‐based metrics of water content, including live fuel moisture, or pressure‐based metrics of physiological status, such as xylem water potential; however, relationships across these metrics, plant traits and flammability remain unresolved.To determine the impact of hydration on tissue‐level flammability (leaves and stems), we conducted laboratory dehydration tests across wet and dry seasons in which we simultaneously measured xylem water potential, live fuel moisture and flammability. We tested two widespread chaparral shrubs,Adenostoma fasciculatumandCeanothus megacarpus.Live fuel moisture showed a threshold‐type relationship with tissue flammability (increased ignitability and combustibility at specific hydration levels) that aligned with drought‐response traits (turgor loss point) and fire behaviour (increased fire likelihood and spread) identified at the landscape scale. Water potential was the better predictor of flammability in linear statistical models.A. fasciculatumwas more flammable thanC. megacarpus, and both species were more flammable during the wet growing season, suggesting seasonal growth or drought‐related tissue characteristics other than moisture content, such as lignin or chemical content, are critical for determining flammability.Our results suggest a mechanism for landscape‐scale increases in flammability at specific levels of drought stress. Integration of drought‐related traits, such as the turgor loss point, might improve models of wildfire risk in drought‐ and fire‐prone systems. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  5. Abstract Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long‐term measurements.We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems.Apart fromA.pseudoplatanusandQ.petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited toB.pendulaandC.avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel.Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental andTPMdata show that leaf xylem is generally no more vulnerable than stem xylem. 
    more » « less