skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uniting Surface Properties With Hydrodynamic Roughness in Shallow Overland Flow Models
Abstract Describing flow resistance from the properties of an underlying surface is a challenge in surface hydrology. Runoff models must specify a resistance formulation or “roughness scheme”—describing the functional relationship between flow resistance and flow depth/velocity—and its parameters. Uncertainty in runoff predictions derives from both the selected roughness scheme (e.g., Darcy Weisbach, Manning's, or laminar flow equations), and its parameterization with a roughness coefficient (e.g., Manning's ). Both choices are informed by model calibration to data, usually discharge, and, if available, velocity. In this study, a Saint Venant Equation‐based runoff model is calibrated to discharge and velocity data from 112 rainfall simulator experiments. The results are used to identify the optimal roughness scheme among four widely‐used options for each experiment, and to explore whether surface properties can be used to select the optimal roughness scheme and its coefficient. Among the tested roughness schemes, a transitional flow equation provided the best fit to the plurality of experiments. The most suitable roughness scheme for a given experiment was not related to measured surface properties. Regression models predicted the calibrated roughness coefficients with adjusted values between 0.48 and 0.54, depending on the roughness scheme used. Litter cover was the best predictor of the roughness coefficient, followed by soil cover and average canopy gap size. The results suggest that selection of an optimal roughness scheme based on surface properties alone remains difficult, but that once a scheme is selected, roughness coefficients can be estimated from surface properties.  more » « less
Award ID(s):
2028633
PAR ID:
10651526
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Water Resources Research
Volume:
61
Issue:
1
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On hillslopes with patchy vegetation cover, vegetation is a significant factor controlling surface hydraulic and hydrological properties.  Soil permeability is often greater within vegetated areas than in surrounding bare soil areas, leading to the redistribution of rainfall from bare, runoff-generating areas to permeable, vegetated areas. While many studies have examined the hydrological consequences of permeability contrasts, the hydrodynamic effects of greater surface roughness in vegetated patches compared to bare areas remain under-investigated. The role of roughness is not obvious: greater roughness in vegetated patches provides greater resistance to flow, slowing water movement and thus extending the time frame over which infiltration can occur. However, greater roughness may also cause partial blocking and flow diversion, reducing the volume of water traversing vegetated areas, a mechanism that could reduce rainfall redistribution to these sites. To differentiate the roles of spatially-varying roughness and permeability on rainfall redistribution, the two-dimensional Saint Venant Equations are employed to model the hydrologic outcomes of permeability and roughness contrasts under varying rainfall intensities.The simulations consider the dynamically interesting case of an idealized vegetated patch surrounded by runoff-generating unvegetated areas. The model results indicate that greater resistance causes flow diversion around vegetation. However, vegetative resistance only reduces rainfall redistributed to the vegetation under the specific conditions of low rainfall intensity and high soil permeability. Otherwise, prolonged ponding during the recession period, due to greater vegetative resistance, creates additional time for infiltration, compensating for increased flow diversion around the vegetation.  
    more » « less
  2. Quantification of roughness effects on free surface flows is unquestionably necessary when describing water and material transport within ecosystems. The conventional hydrodynamic resistance formula empirically shows that the Darcy–Weisbach friction factor f~(r/hw)1/3 describes the energy loss of flowing water caused by small-scale roughness elements characterized by size r (< 
    more » « less
  3. Boundary Layer Wind Tunnel (BLWT) facilities are commonly used for assessing wind loads on structures. Although BLWT facilities routinely match 1st and 2nd-order wind profile models, evidence suggests that turbulence in the roughness sublayer and the inertial sublayer exhibit non-Gaussian higher-order properties. These non-Gaussian properties can influence peak wind pressures, which govern certain structural limit states and play an important role in design. In the first part of this project, Machine learning (ML) methods are employed to identify relationships between roughness element configurations and higher-order statistical properties of the wind field. A semi-automated framework with an active learning portion and a wind tunnel experimental procedure is developed. The learning framework adaptively selects roughness profiles and launches new experiments to identify differing profiles with second-order equivalent flow as quantified by turbulence intensity. The premise is that second-order equivalent wind fields can differ in higher-order properties and therefore extreme value derived peak loads may differ. Over the course of this project, the turbulence profiles from hundreds of different Terraformer roughness element configurations were collected, providing a very rich dataset of boundary layer flow as a function of upwind fetch. Experiment 1 provides the metadata to describe and interpret measured wind profiles at the UFBLWT for a data set collected for the Benchmark experiments and 3 different phases: 1) Sinusoidal waves experiments, 2) Shape study experiments and, 3) Random field experiments. Experiment 2 of this dataset presents the results of experiments conducted in the UFBLWT, with a focus on measuring turbulence characteristics and pressure coefficients on a bluff body under varying terrain roughness configurations. The dataset provides valuable insights into the influence of upwind fetch and surface roughness on wind-induced forces, contributing to improved modeling and prediction of wind loads on structures. Based on the Terraformer configurations in experiment 1, select configurations (Benchmark and Phase 1 Terraformer configurations only) were chosen for bluff body experiments, along with additional approach turbulence measurements at a lateral location to the model. This dataset includes three key components for Benchmark and Phase 1 Terraformer configurations: reference wind velocity (uRef), lateral approach flow profiles (LatFlow), and pressure coefficients (Cpdata) on the bluff body. 
    more » « less
  4. Abstract In drylands, runoff during storms redistributes water and nutrients from bare soil areas to vegetated patches, subsidizing vegetation with additional resources. The extent of this redistribution depends on the interplay between surface roughness and permeability; greater permeability in vegetated patches promotes run‐on to vegetation, but greater surface roughness diverts runoff, producing tortuous flow paths that bypass vegetation. Here, this interplay is examined in virtual experiments using the 2D Saint Venant Equations to measure runoff connectivity. Flowpaths are delineated using tracers advected by the flow. Distances between tracer sources and sinks along flowpaths measure hydrologic connectivity at two lengthscales: connectivity to the hillslope outlet and within‐slope source‐sink connectivity. Differences between these connectivity lengthscales indicate how flow may “by‐pass” vegetated patches within hillslopes. At the hillslope scale, a derived power‐law relation between the runoff coefficient and outlet connectivity describes hillslope water losses, providing a foundation for identifying landscapes likely to shed water. 
    more » « less
  5. The storage of granular materials is a critical process in industry, which has driven research into flow in silos. Varying material properties, such as particle size, can cause segregation of mixtures. This work seeks to elucidate the effects of size differences and determine how using a flow-correcting insert mitigates segregation during silo discharge. A rotating table was used to collect mustard seeds discharged from a three-dimensional (3D)-printed silo. This was loaded with bidisperse mixtures of varying proportions. A 3D-printed biconical insert was suspended near the hopper exit to assess its effect on the flow. Samples were analysed to determine the mass fractions of small particle species. The experiments without the insert resulted in patterns consistent with segregation. Introducing the insert into the silo eliminated the observed segregation during discharge. Discrete element method simulations of silo discharge were performed with and without the insert. These results mirrored the physical experiment and, when complimented with coarse graining analysis, explained the effect of the insert. Most of the segregation occurs at the grain–air free surface and is driven by large velocity gradients. In the silo with an insert, the velocity gradient at the free surface is greatly reduced, hence, so is the degree of segregation. 
    more » « less