skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Investigating distress levels in patients with metastatic spine disease undergoing surgical intervention
OBJECTIVECancer patients often experience high levels of distress, which are particularly pronounced in the perioperative period. However, there is a dearth of research on distress rates in patients with metastatic spine disease (MSD). This study aims to assess pre- and postoperative distress levels in patients with MSD undergoing surgical intervention, as well as the association between distress and sociodemographic factors. METHODSThe authors retrospectively queried electronic medical records from a single institution for demographic and clinical data on patients with MSD who underwent surgical intervention between 2015 and 2023. Data included pre- (within 30 days of surgery) and postoperative (within 30 and 90 days of surgery) National Comprehensive Cancer Network’s distress thermometer (NCCN-DT) scores. The proportion of patients with clinically significant distress (DT score ≥ 4) at each time point was examined, as well as changes between baseline distress and distress 30 days postoperatively. The association between clinically significant distress and sex, age, race/ethnicity, and marital status was assessed. A p value < 0.05 was considered significant. RESULTSThe study identified 265 patients with complete NCCN-DT questionnaires. Nearly half (47.5%) of the patients were female, with 66.0% identifying as Caucasian/White. The mean (± standard deviation) age at surgery was 61.4 ± 12.1 years. Preoperatively, the mean distress score was 3.6 ± 3.1 (range 0–10), with 89 (46.4%) of 192 patients reporting moderate to severe distress (DT ≥ 4). The mean distress score at 30 days postoperatively was 3.2 ± 3.0 (range 0–10), with 43.8% of patients reporting moderate to severe distress. At 90 days postoperatively, the mean distress score was 2.3 ± 2.5 (range 0–9) with 26.6% of patients reporting moderate to severe levels. Non-White patients had significantly higher preoperative distress than their White counterparts (p = 0.03). CONCLUSIONSDistress is a common experience among patients with MSD undergoing surgical intervention. Preoperatively, nearly half of these patients report moderate to severe distress, with distress levels remaining elevated through the 1st month after surgery. These findings highlight the critical need for timely psychosocial interventions to address distress at key stages of the surgical process. Race-based differences in distress rates emphasize the importance of developing targeted support strategies for more vulnerable groups.  more » « less
Award ID(s):
2125528
PAR ID:
10651541
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
The American Association of Neurological Surgeons (AANS) publishes Neurosurgical Focus through its scholarly publication arm, the Journal of Neurosurgery Publishing Group (JNSPG)
Date Published:
Journal Name:
Neurosurgical Focus
Volume:
58
Issue:
5
ISSN:
1092-0684
Page Range / eLocation ID:
E15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundAlthough conventional prediction models for surgical patients often ignore intraoperative time-series data, deep learning approaches are well-suited to incorporate time-varying and non-linear data with complex interactions. Blood lactate concentration is one important clinical marker that can reflect the adequacy of systemic perfusion during cardiac surgery. During cardiac surgery and cardiopulmonary bypass, minute-level data is available on key parameters that affect perfusion. The goal of this study was to use machine learning and deep learning approaches to predict maximum blood lactate concentrations after cardiac surgery. We hypothesized that models using minute-level intraoperative data as inputs would have the best predictive performance. MethodsAdults who underwent cardiac surgery with cardiopulmonary bypass were eligible. The primary outcome was maximum lactate concentration within 24 h postoperatively. We considered three classes of predictive models, using the performance metric of mean absolute error across testing folds: (1) static models using baseline preoperative variables, (2) augmentation of the static models with intraoperative statistics, and (3) a dynamic approach that integrates preoperative variables with intraoperative time series data. Results2,187 patients were included. For three models that only used baseline characteristics (linear regression, random forest, artificial neural network) to predict maximum postoperative lactate concentration, the prediction error ranged from a median of 2.52 mmol/L (IQR 2.46, 2.56) to 2.58 mmol/L (IQR 2.54, 2.60). The inclusion of intraoperative summary statistics (including intraoperative lactate concentration) improved model performance, with the prediction error ranging from a median of 2.09 mmol/L (IQR 2.04, 2.14) to 2.12 mmol/L (IQR 2.06, 2.16). For two modelling approaches (recurrent neural network, transformer) that can utilize intraoperative time-series data, the lowest prediction error was obtained with a range of median 1.96 mmol/L (IQR 1.87, 2.05) to 1.97 mmol/L (IQR 1.92, 2.05). Intraoperative lactate concentration was the most important predictive feature based on Shapley additive values. Anemia and weight were also important predictors, but there was heterogeneity in the importance of other features. ConclusionPostoperative lactate concentrations can be predicted using baseline and intraoperative data with moderate accuracy. These results reflect the value of intraoperative data in the prediction of clinically relevant outcomes to guide perioperative management. 
    more » « less
  2. BACKGROUND:Classification of perioperative risk is important for patient care, resource allocation, and guiding shared decision-making. Using discriminative features from the electronic health record (EHR), machine-learning algorithms can create digital phenotypes among heterogenous populations, representing distinct patient subpopulations grouped by shared characteristics, from which we can personalize care, anticipate clinical care trajectories, and explore therapies. We hypothesized that digital phenotypes in preoperative settings are associated with postoperative adverse events including in-hospital and 30-day mortality, 30-day surgical redo, intensive care unit (ICU) admission, and hospital length of stay (LOS). METHODS:We identified all laminectomies, colectomies, and thoracic surgeries performed over a 9-year period from a large hospital system. Seventy-seven readily extractable preoperative features were first selected from clinical consensus, including demographics, medical history, and lab results. Three surgery-specific datasets were built and split into derivation and validation cohorts using chronological occurrence. Consensusk-means clustering was performed independently on each derivation cohort, from which phenotypes’ characteristics were explored. Cluster assignments were used to train a random forest model to assign patient phenotypes in validation cohorts. We reconducted descriptive analyses on validation cohorts to confirm the similarity of patient characteristics with derivation cohorts, and quantified the association of each phenotype with postoperative adverse events by using the area under receiver operating characteristic curve (AUROC). We compared our approach to American Society of Anesthesiologists (ASA) alone and investigated a combination of our phenotypes with the ASA score. RESULTS:A total of 7251 patients met inclusion criteria, of which 2770 were held out in a validation dataset based on chronological occurrence. Using segmentation metrics and clinical consensus, 3 distinct phenotypes were created for each surgery. The main features used for segmentation included urgency of the procedure, preoperative LOS, age, and comorbidities. The most relevant characteristics varied for each of the 3 surgeries. Low-risk phenotype alpha was the most common (2039 of 2770, 74%), while high-risk phenotype gamma was the rarest (302 of 2770, 11%). Adverse outcomes progressively increased from phenotypes alpha to gamma, including 30-day mortality (0.3%, 2.1%, and 6.0%, respectively), in-hospital mortality (0.2%, 2.3%, and 7.3%), and prolonged hospital LOS (3.4%, 22.1%, and 25.8%). When combined with the ASA score, digital phenotypes achieved higher AUROC than the ASA score alone (hospital mortality: 0.91 vs 0.84; prolonged hospitalization: 0.80 vs 0.71). CONCLUSIONS:For 3 frequently performed surgeries, we identified 3 digital phenotypes. The typical profiles of each phenotype were described and could be used to anticipate adverse postoperative events. 
    more » « less
  3. Abstract Background Few interventions are known to reduce the incidence of respiratory failure that occurs following elective surgery (postoperative respiratory failure; PRF). We previously reported risk factors associated with PRF that occurs within the first 5 days after elective surgery (early PRF; E-PRF); however, PRF that occurs six or more days after elective surgery (late PRF; L-PRF) likely represents a different entity. We hypothesized that L-PRF would be associated with worse outcomes and different risk factors than E-PRF. Methods This was a retrospective matched case-control study of 59,073 consecutive adult patients admitted for elective non-cardiac and non-pulmonary surgical procedures at one of five University of California academic medical centers between October 2012 and September 2015. We identified patients with L-PRF, confirmed by surgeon and intensivist subject matter expert review, and matched them 1:1 to patients who did not develop PRF (No-PRF) based on hospital, age, and surgical procedure. We then analyzed risk factors and outcomes associated with L-PRF compared to E-PRF and No-PRF. Results Among 95 patients with L-PRF, 50.5% were female, 71.6% white, 27.4% Hispanic, and 53.7% Medicare recipients; the median age was 63 years (IQR 56, 70). Compared to 95 matched patients with No-PRF and 319 patients who developed E-PRF, L-PRF was associated with higher morbidity and mortality, longer hospital and intensive care unit length of stay, and increased costs. Compared to No-PRF, factors associated with L-PRF included: preexisiting neurologic disease (OR 4.36, 95% CI 1.81–10.46), anesthesia duration per hour (OR 1.22, 95% CI 1.04–1.44), and maximum intraoperative peak inspiratory pressure per cm H 2 0 (OR 1.14, 95% CI 1.06–1.22). Conclusions We identified that pre-existing neurologic disease, longer duration of anesthesia, and greater maximum intraoperative peak inspiratory pressures were associated with respiratory failure that developed six or more days after elective surgery in adult patients (L-PRF). Interventions targeting these factors may be worthy of future evaluation. 
    more » « less
  4. Gait speed assessment increases the predictive value of mortality and morbidity following older adults’ cardiac surgery. The purpose of this study was to improve clinical assessment and prediction of mortality and morbidity among older patients undergoing cardiac surgery through the identification of the relationships between preoperative gait and postural stability characteristics utilizing a noninvasive-wearable mobile phone device and postoperative cardiac surgical outcomes. This research was a prospective study of ambulatory patients aged over 70 years undergoing non-emergent cardiac surgery. Sixteen older adults with cardiovascular disease (Age 76.1 ± 3.6 years) scheduled for cardiac surgery within the next 24 h were recruited for this study. As per the Society of Thoracic Surgeons (STS) recommendation guidelines, eight of the cardiovascular disease (CVD) patients were classified as frail (prone to adverse outcomes with gait speed ≤0.833 m/s) and the remaining eight patients as non-frail (gait speed >0.833 m/s). Treating physicians and patients were blinded to gait and posture assessment results not to influence the decision to proceed with surgery or postoperative management. Follow-ups regarding patient outcomes were continued until patients were discharged or transferred from the hospital, at which time data regarding outcomes were extracted from the records. In the preoperative setting, patients performed the 5-m walk and stand still for 30 s in the clinic while wearing a mobile phone with a customized app “Lockhart Monitor” available at iOS App Store. Systematic evaluations of different gait and posture measures identified a subset of smartphone measures most sensitive to differences in two groups (frail versus non-frail) with adverse postoperative outcomes (morbidity/mortality). A regression model based on these smartphone measures tested positive on five CVD patients. Thus, clinical settings can readily utilize mobile technology, and the proposed regression model can predict adverse postoperative outcomes such as morbidity or mortality events. 
    more » « less
  5. ObjectiveTo examine the impact of increased body mass index (BMI) on (1) tracheotomy timing and (2) short‐term surgical complications requiring a return to the operating room and 30‐day mortality utilizing data from the Multi‐Institutional Study on Tracheotomy (MIST). MethodsA retrospective analysis of patients from the MIST database who underwent surgical or percutaneous tracheotomy between 2013 and 2016 at eight institutions was completed. Unadjusted and adjusted logistic regression analyses were used to assess the impact of obesity on tracheotomy timing and complications. ResultsAmong the 3369 patients who underwent tracheotomy, 41.0% were obese and 21.6% were morbidly obese. BMI was associated with higher rates of prolonged intubation prior to tracheotomy accounting for comorbidities, indication for tracheotomy, institution, and type of tracheostomy (p = 0.001). Morbidly obese patients (BMI ≥35 kg/m2) experienced a longer duration of intubation compared with patients with a normal BMI (median days intubated [IQR 25%–75%]: 11.0 days [7–17 days] versus 9.0 days [5–14 days];p < 0.001) but did not have statistically higher rates of return to the operating room within 30 days (p = 0.12) or mortality (p = 0.90) on multivariable analysis. This same finding of prolonged intubation was not seen in overweight, nonobese patients when compared with normal BMI patients (median days intubated [IQR 25%–75%]: 10.0 days [6–15 days] versus 10.0 days [6–15 days];p = 0.36). ConclusionBMI was associated with increased duration of intubation prior to tracheotomy. Although morbidly obese patients had a longer duration of intubation, there were no differences in return to the operating room or mortality within 30 days. Level of Evidence3Laryngoscope, 134:4674–4681, 2024 
    more » « less