Abstract Mechanistic, multicellular, agent-based models are commonly used to investigate tissue, organ, and organism-scale biology at single-cell resolution. The Cellular-Potts Model (CPM) is a powerful and popular framework for developing and interrogating these models. CPMs become computationally expensive at large space- and time- scales making application and investigation of developed models difficult. Surrogate models may allow for the accelerated evaluation of CPMs of complex biological systems. However, the stochastic nature of these models means each set of parameters may give rise to different model configurations, complicating surrogate model development. In this work, we leverage denoising diffusion probabilistic models (DDPMs) to train a generative AI surrogate of a CPM used to investigatein vitrovasculogenesis. We describe the use of an image classifier to learn the characteristics that define unique areas of a 2-dimensional parameter space. We then apply this classifier to aid in surrogate model selection and verification. Our CPM model surrogate generates model configurations 20,000 timesteps ahead of a reference configuration and demonstrates approximately a 22x reduction in computational time as compared to native code execution. Our work represents a step towards the implementation of DDPMs to develop digital twins of stochastic biological systems.
more »
« less
This content will become publicly available on November 3, 2026
Surrogate modeling of Cellular-Potts agent-based models as a segmentation task using the U-Net neural network architecture
The Cellular-Potts model is a powerful and ubiquitous framework for developing computational models for simulating complex multicellular biological systems. Cellular-Potts models (CPMs) are often computationally expensive due to the explicit modeling of interactions among large numbers of individual model agents and diffusive fields described by partial differential equations (PDEs). In this work, we develop a convolutional neural network (CNN) surrogate model using a U-Net architecture that accounts for periodic boundary conditions. We use this model to accelerate the evaluation of a mechanistic CPM previously used to investigatein vitrovasculogenesis. The surrogate model was trained to predict 100 computational steps ahead (Monte-Carlo steps, MCS), accelerating simulation evaluations by a factor of 562 times compared to single-core CPM code execution on CPU. Over short timescales of up to 3 recursive evaluations, or 300 MCS, our model captures the emergent behaviors demonstrated by the original Cellular-Potts model such as vessel sprouting, extension and anastomosis, and contraction of vascular lacunae. This approach demonstrates the potential for deep learning to serve as a step toward efficient surrogate models for CPM simulations, enabling faster evaluation of computationally expensive CPM simulations of biological processes.
more »
« less
- Award ID(s):
- 2212550
- PAR ID:
- 10651643
- Editor(s):
- Maini, Philip K
- Publisher / Repository:
- Public Library of Science,
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 21
- Issue:
- 11
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1013626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fast inference of numerical model parameters from data is an important prerequisite to generate predictive models for a wide range of applications. Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive. New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space, and rely on gradient-based optimization instead of sampling, providing a more efficient approach for Bayesian inference about the model parameters. Moreover, the cost of frequently evaluating an expensive likelihood can be mitigated by replacing the true model with an offline trained surrogate model, such as neural networks. However, this approach might generate significant bias when the surrogate is insufficiently accurate around the posterior modes. To reduce the computational cost without sacrificing inferential accuracy, we propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and surrogate model parameters. We also propose an efficient sample weighting scheme for surrogate model training that preserves global accuracy while effectively capturing high posterior density regions. We demonstrate the inferential and computational superiority of NoFAS against various benchmarks, including cases where the underlying model lacks identifiability. The source code and numerical experiments used for this study are available at https://github.com/cedricwangyu/NoFAS.more » « less
-
Brehm, Christoph; Pandya, Shishir (Ed.)Computational fluid dynamics (CFD) and its uncertainty quantification are computationally expensive. We use Gaussian Process (GP) methods to demonstrate that machine learning can build efficient and accurate surrogate models to replace CFD simulations with significantly reduced computational cost without compromising the physical accuracy. We also demonstrate that both epistemic uncertainty (machine learning model uncertainty) and aleatory uncertainty (randomness in the inputs of CFD) can be accommodated when the machine learning model is used to reveal fluid dynamics. The demonstration is performed by applying simulation of Hagen-Poiseuille and Womersley flows that involve spatial and spatial-tempo responses, respectively. Training points are generated by using the analytical solutions with evenly discretized spatial or spatial-temporal variables. Then GP surrogate models are built using supervised machine learning regression. The error of the GP model is quantified by the estimated epistemic uncertainty. The results are compared with those from GPU-accelerated volumetric lattice Boltzmann simulations. The results indicate that surrogate models can produce accurate fluid dynamics (without CFD simulations) with quantified uncertainty when both epistemic and aleatory uncertainties exist.more » « less
-
Abstract When limit-state functions are highly nonlinear, traditional reliability methods, such as the first-order and second-order reliability methods, are not accurate. Monte Carlo simulation (MCS), on the other hand, is accurate if a sufficient sample size is used but is computationally intensive. This research proposes a new system reliability method that combines MCS and the Kriging method with improved accuracy and efficiency. Accurate surrogate models are created for limit-state functions with minimal variance in the estimate of the system reliability, thereby producing high accuracy for the system reliability prediction. Instead of employing global optimization, this method uses MCS samples from which training points for the surrogate models are selected. By considering the autocorrelation of a surrogate model, this method captures the more accurate contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated by four examples.more » « less
-
Surrogate modeling has become a critical component of scientific computing in situationsinvolving expensive model evaluations. However, training a surrogate model can be remark-ably challenging and even computationally prohibitive in the case of intensive simulationsand large-dimensional systems. We develop a systematic approach for surrogate model con-struction in reduced input parameter spaces. A sparse set of model evaluations in the originalinput space is used to approximate derivative based global sensitivity measures (DGSMs)for individual uncertain inputs of the model. An iterative screening procedure is developedthat exploits DGSM estimates in order to identify theunimportantinputs. The screeningprocedure forms an integral part of an overall framework for adaptive construction of a sur-rogate in the reduced space. The framework is tested for computational efficiency throughan initial implementation in simple test cases such as the classic Borehole function, and asemilinear elliptic PDE with a random source function. The framework is then deployed fora realistic application from chemical kinetics, where we study the ignition delay in an H2/O2reaction mechanism with 19 and 33 uncertain rate-controlling parameters. It is observed thatsignificant computational gains can be attained by constructing accurate low-dimensionalsurrogates using the proposed framework.more » « less
An official website of the United States government
