We present a computational framework for dimension reduction and surrogate modeling to accelerate uncertainty quantification in computationally intensive models with high-dimensional inputs and function-valued outputs. Our driving application is multiphase flow in saturated-unsaturated porous media in the context of radioactive waste storage. For fast input dimension reduction, we utilize an approximate global sensitivity measure, for function-valued outputs, motivated by ideas from the active subspace methods. The proposed approach does not require expensive gradient computations. We generate an efficient surrogate model by combining a truncated Karhunen-Loeve (KL) expansion of the output with polynomial chaos expansions, for the output KL modes, constructed in the reduced parameter space. We demonstrate the effectiveness of the proposed surrogate modeling approach with a comprehensive set of numerical experiments, where we consider a number of function-valued (temporally or spatially distributed) QoIs.
more »
« less
Sensitivity-Driven Adaptive Construction of Reduced-space Surrogates
Surrogate modeling has become a critical component of scientific computing in situationsinvolving expensive model evaluations. However, training a surrogate model can be remark-ably challenging and even computationally prohibitive in the case of intensive simulationsand large-dimensional systems. We develop a systematic approach for surrogate model con-struction in reduced input parameter spaces. A sparse set of model evaluations in the originalinput space is used to approximate derivative based global sensitivity measures (DGSMs)for individual uncertain inputs of the model. An iterative screening procedure is developedthat exploits DGSM estimates in order to identify theunimportantinputs. The screeningprocedure forms an integral part of an overall framework for adaptive construction of a sur-rogate in the reduced space. The framework is tested for computational efficiency throughan initial implementation in simple test cases such as the classic Borehole function, and asemilinear elliptic PDE with a random source function. The framework is then deployed fora realistic application from chemical kinetics, where we study the ignition delay in an H2/O2reaction mechanism with 19 and 33 uncertain rate-controlling parameters. It is observed thatsignificant computational gains can be attained by constructing accurate low-dimensionalsurrogates using the proposed framework.
more »
« less
- Award ID(s):
- 1745654
- PAR ID:
- 10104991
- Date Published:
- Journal Name:
- Journal of scientific computing
- Volume:
- 79
- ISSN:
- 0885-7474
- Page Range / eLocation ID:
- 1335-1359
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optimizing a black-box function that is expensive to evaluate emerges in a gamut of machine learning and artifcial intelligence applications including drug discovery, policy optimization in robotics, and hyperparameter tuning of learning models to list a few. Bayesian optimization (BO) provides a principled framework to fnd the global optimum of such functions using a limited number of function evaluations. BO relies on a statistical surrogate model to actively select new query points, that is typically captured by a Gaussian process (GP). Unlike most existing approaches that hinge on a single GP surrogate model with a pre-selected kernel function that may confne the expressiveness of the sought function especially under the limited evaluation budget, the present work puts forth a weighted ensemble of GPs as a surrogate model. Building on the advocated Gaussian mixture (GM) posterior, the EGP framework adapts to the most ftted surrogate model as data arrive on-the-fy, offering a richer function space. For the acquisition of next evaluation points, the EGP-based posterior is coupled with an adaptive expected improvement (EI) criterion to balance exploration and exploitation of the search space. Numerical tests on a set of benchmark synthetic functions and two robotic tasks, demonstrate the impressive benefts of the proposed approach.more » « less
-
Optimizing expensive to evaluate black-box functions over an input space consisting of all permutations of d objects is an important problem with many real-world applications. For example, placement of functional blocks in hardware design to optimize performance via simulations. The overall goal is to minimize the number of function evaluations to find high-performing permutations. The key challenge in solving this problem using the Bayesian optimization (BO) framework is to trade-off the complexity of statistical model and tractability of acquisition function optimization. In this paper, we propose and evaluate two algorithms for BO over Permutation Spaces (BOPS). First, BOPS-T employs Gaussian process (GP) surrogate model with Kendall kernels and a Tractable acquisition function optimization approach to select the sequence of permutations for evaluation. Second, BOPS-H employs GP surrogate model with Mallow kernels and a Heuristic search approach to optimize the acquisition function. We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly. Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for combinatorial spaces. To drive future research on this important problem, we make new resources and real-world benchmarks available to the community.more » « less
-
Maini, Philip K (Ed.)The Cellular-Potts model is a powerful and ubiquitous framework for developing computational models for simulating complex multicellular biological systems. Cellular-Potts models (CPMs) are often computationally expensive due to the explicit modeling of interactions among large numbers of individual model agents and diffusive fields described by partial differential equations (PDEs). In this work, we develop a convolutional neural network (CNN) surrogate model using a U-Net architecture that accounts for periodic boundary conditions. We use this model to accelerate the evaluation of a mechanistic CPM previously used to investigatein vitrovasculogenesis. The surrogate model was trained to predict 100 computational steps ahead (Monte-Carlo steps, MCS), accelerating simulation evaluations by a factor of 562 times compared to single-core CPM code execution on CPU. Over short timescales of up to 3 recursive evaluations, or 300 MCS, our model captures the emergent behaviors demonstrated by the original Cellular-Potts model such as vessel sprouting, extension and anastomosis, and contraction of vascular lacunae. This approach demonstrates the potential for deep learning to serve as a step toward efficient surrogate models for CPM simulations, enabling faster evaluation of computationally expensive CPM simulations of biological processes.more » « less
-
Abstract This paper introduces a computational framework to reconstruct and forecast a partially observed state that evolves according to an unknown or expensive-to-simulate dynamical system. Our reduced-order autodifferentiable ensemble Kalman filters (ROAD-EnKFs) learn a latent low-dimensional surrogate model for the dynamics and a decoder that maps from the latent space to the state space. The learned dynamics and decoder are then used within an EnKF to reconstruct and forecast the state. Numerical experiments show that if the state dynamics exhibit a hidden low-dimensional structure, ROAD-EnKFs achieve higher accuracy at lower computational cost compared to existing methods. If such structure is not expressed in the latent state dynamics, ROAD-EnKFs achieve similar accuracy at lower cost, making them a promising approach for surrogate state reconstruction and forecasting.more » « less
An official website of the United States government

