Significant obstacles exist in scientific domains including genetics, climate modeling, and astronomy due to the management, preprocess, and training on complicated data for deep learning. Even while several large-scale solutions offer distributed execution environments, open-source alternatives that integrate scalable runtime tools, deep learning and data frameworks on high-performance computing platforms remain crucial for accessibility and flexibility. In this paper, we introduce Deep Radical-Cylon(RC), a heterogeneous runtime system that combines data engineering, deep learning frameworks, and workflow engines across several HPC environments, including cloud and supercomputing infrastructures. Deep RC supports heterogeneous systems with accelerators, allows the usage of communication libraries like MPI, GLOO and NCCL across multi-node setups, and facilitates parallel and distributed deep learning pipelines by utilizing Radical Pilot as a task execution framework. By attaining an end-to-end pipeline including preprocessing, model training, and postprocessing with 11 neural forecasting models (PyTorch) and hydrology models (TensorFlow) under identical resource conditions, the system reduces 3.28 and 75.9 seconds, respectively. The design of Deep RC guarantees the smooth integration of scalable data frameworks, such as Cylon, with deep learning processes, exhibiting strong performance on cloud platforms and scientific HPC systems. By offering a flexible, high-performance solution for resource-intensive applications, this method closes the gap between data preprocessing, model training, and postprocessing.
more »
« less
This content will become publicly available on June 3, 2026
Deep RC: A Scalable Data Engineering and Deep Learning Pipeline
Significant obstacles exist in scientific domains including genetics, climate modeling, and astronomy due to the management, preprocess, and training on complicated data for deep learning. Even while several large-scale solutions offer distributed execution environments, open-source alternatives that integrate scalable runtime tools, deep learning and data frameworks on high-performance computing platforms remain crucial for accessibility and flexibility. In this paper, we introduce Deep Radical-Cylon(RC), a heterogeneous runtime system that combines data engineering, deep learning frameworks, and workflow engines across several HPC environments, including cloud and supercomputing infrastructures. Deep RC supports heterogeneous systems with accelerators, allows the usage of communication libraries like \texttt{MPI}, \texttt{GLOO} and \texttt{NCCL} across multi-node setups, and facilitates parallel and distributed deep learning pipelines by utilizing Radical Pilot as a task execution framework. By attaining an end-to-end pipeline including preprocessing, model training, and postprocessing with 11 neural forecasting models (PyTorch) and hydrology models (TensorFlow) under identical resource conditions, the system reduces 3.28 and 75.9 seconds, respectively. The design of Deep RC guarantees the smooth integration of scalable data frameworks, such as Cylon, with deep learning processes, exhibiting strong performance on cloud platforms and scientific HPC systems. By offering a flexible, high-performance solution for resource-intensive applications, this method closes the gap between data preprocessing, model training, and postprocessing.
more »
« less
- PAR ID:
- 10651658
- Publisher / Repository:
- Springer. JSSPP 2025: Job Scheduling Strategies for Parallel Processing
- Date Published:
- Format(s):
- Medium: X
- Location:
- Milan, Italy
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Managing and preparing complex data for deep learning, a prevalent approach in large-scale data science can be challenging. Data transfer for model training also presents difficulties, impacting scientific fields like genomics, climate modeling, and astronomy. A large-scale solution like Google Pathways with a distributed execution environment for deep learning models exists but is proprietary. Integrating existing open-source, scalable runtime tools and data frameworks on high-performance computing (HPC) platforms is crucial to address these challenges. Our objective is to establish a smooth and unified method of combining data engineering and deep learning frameworks with diverse execution capabilities that can be deployed on various high-performance computing platforms, including cloud and supercomputers. We aim to support heterogeneous systems with accelerators, where Cylon and other data engineering and deep learning frameworks can utilize heterogeneous execution. To achieve this, we propose Radical-Cylon, a heterogeneous runtime system with a parallel and distributed data framework to execute Cylon as a task of Radical Pilot. We thoroughly explain Radical-Cylon’s design and development and the execution process of Cylon tasks using Radical Pilot. This approach enables the use of heterogeneous MPI-Communicators across multiple nodes. Radical-Cylon achieves better performance than Bare-Metal Cylon with minimal and constant overhead. Radical-Cylon achieves (4 15)% faster execution time than batch execution while performing similar join and sort operations with 35 million and 3.5 billion rows with the same resources. The approach aims to excel in both scientific and engineering research HPC systems while demonstrating robust performance on cloud infrastructures. This dual capability fosters collaboration and innovation within the open-source scientific research community.Not Availablemore » « less
-
Distributed deep learning framework tools should aim at high efficiency of training and inference of distributed exascale deep learning algorithms. There are three major challenges in this endeavor: scalability, adaptivity and efficiency. Any future framework will need to be adaptively utilized for a variety of heterogeneous hardware and network environments and will thus be required to be capable of scaling from single compute node up to large clusters. Further, it should be efficiently integrated into popular frameworks such as TensorFlow, PyTorch, etc. This paper proposes a dynamically hybrid (hierarchy) distribution structure for distributed deep learning, taking advantage of flexible synchronization on both centralized and decentralized architectures, implementing multi-level fine-grain parallelism on distributed platforms. It is scalable as the number of compute nodes increases, and can also adapt to various compute abilities, memory structures and communication costs.more » « less
-
The data engineering and data science community has embraced the idea of using Python and R dataframes for regular applications. Driven by the big data revolution and artificial intelligence, these frameworks are now ever more important in order to process terabytes of data. They can easily exceed the capabilities of a single machine but also demand significant developer time and effort due to their convenience and ability to manipulate data with high-level abstractions that can be optimized. Therefore it is essential to design scalable dataframe solutions. There have been multiple efforts to be integrated into the most efficient fashion to tackle this problem, the most notable being the dataframe systems developed using distributed computing environments such as Dask and Ray. Even though Dask and Ray's distributed computing features look very promising, we perceive that the Dask Dataframes and Ray Datasets still have room for optimization In this paper, we present CylonFlow, an alternative distributed dataframe execution methodology that enables state-of-the-art performance and scalability on the same Dask and Ray infrastructure (superchargingthem!). To achieve this, we integrate ahigh-performance dataframesystem Cylon, which was originally based on an entirely different execution paradigm, into Dask and Ray. Our experiments show that on a pipeline of dataframe operators, CylonFlow achieves 30 × more distributed performance than Dask Dataframes. Interestingly, it also enables superior sequential performance due to leveraging the native C++ execution of Cylon. We believe the performance of Cylon in conjunction with CylonFlow extends beyond the data engineering domain and can be used to consolidate high-performance computing and distributed computing ecosystems.more » « less
-
In the age of big data, deep learning has emerged as a powerful tool to extract insight and exploit its value, both in industry and scientific applications. One common pattern emerging in such applications is frequent checkpointing of the state of the learning model during training, needed in a variety of scenarios: analysis of intermediate states to explain features and correlations with training data, exploration strategies involving alternative models that share a common ancestor, knowledge transfer, resilience, etc. However, with increasing size of the learning models and popularity of distributed data-parallel training approaches, simple checkpointing techniques used so far face several limitations: low serialization performance, blocking I/O, stragglers due to the fact that only a single process is involved in checkpointing. This paper proposes a checkpointing technique specifically designed to address the aforementioned limitations, introducing efficient asynchronous techniques to hide the overhead of serialization and I/O, and distribute the load over all participating processes. Experiments with two deep learning applications (CANDLE and ResNet) on a pre-Exascale HPC platform (Theta) shows significant improvement over state-of-art, both in terms of checkpointing duration and runtime overhead.more » « less
An official website of the United States government
