skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multipolar Resonances in Electro‐Optic Metasurfaces with Moderate Refractive Index
The electro‐optic (EO) effect is one of the physical mechanisms enabling the dynamic response of metasurfaces, which motivates the analysis of nanoantenna arrays integrated with EO materials. It was shown earlier that chalcophosphate Sn2P2S6metasurfaces can enable significant shifts of multipolar resonances by enhancing the EO response near the Curie temperature. The present work explores how the refractive index of EO materials impacts resonance shifts in metasurfaces with multipolar resonances. It is numerically demonstrated that EO nanoantennas can support pronounced multipolar resonances despite their moderate refractive index, enabling strong light confinement and substantial EO tuning, and that multipolar components of even parity exhibit the highest sensitivity to variations in the refractive index of the nanoantennas. For moderate refractive indices varying from 2.3 to 3.0, it is found that, for a given resonance, the wavelength shift resulting from a refractive index change has a relatively weak dependence on the index itself. This suggests that the refractive index plays only a marginal role in enhancing the EO shift in active photonic devices, and instead, other considerations for material selection, such as the EO coefficient magnitude, the transparency window, and ease of processing, should be of primary concern.  more » « less
Award ID(s):
2418519
PAR ID:
10651755
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Photonics Research
ISSN:
2699-9293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT When arranged in a metasurface, the collective enhancement of field interactions within scattering elements enables precise control over the incident light phase and amplitude. In this work, we analyze collective multipolar resonances in metasurfaces that arise from the spatially extended nature of electromagnetic interactions within these structures, with particular emphasis on MXene metasurfaces. This collective scattering leads to unique and tunable resonance behaviors that reach beyond the simple dipolar approximations, thus enabling advanced manipulation of light at subwavelength scales. We also explore resonances in the scatterers and metasurfaces made of different materials, categorizing them into lossy materials, including transition metal dichalcogenides and conventional metals, and high‐refractive‐index materials, such as silicon. We observe the excitation of MXene multipolar resonances across the visible‐ and infrared‐wavelength spectra and demonstrate their control through the design of scattering elements of the metasurface. We show that periodic lattice arrays support strong localized resonances through the collective response of individual nanoresonators and that one can control multipolar resonances by engineering metasurface nanoresonators and their distribution. 
    more » « less
  2. High-refractive-index nanoantennas have attracted significant attention lately because of the strong excitations of electric and magnetic resonances in these nanoantennas. Here, we theoretically investigate the excitation of multipolar Mie resonances in high-refractive-index nanoantennas that are immersed in a negative-index medium. Our analysis shows a significant enhancement of magnetic resonances in this case. Furthermore, the magnetic dipolar and quadrupolar resonances exhibit a π-shift compared to these magnetic resonances in a conventional medium, which stems from the “left-handedness” of the negative-index medium. As a result, the spectral regions where electric and magnetic resonances are in-phase or out-of-phase complement, or opposite, to those in a conventional medium. Most importantly, we demonstrate nanoantenna magnetic resonances in two practical cases of negative-index media realized with common materials, such as multilayer structures with surface waves with negative effective mode index and fishnet metamaterial. These findings represent significant progress toward the realization of hybrid emitting structures that exhibit transitions with both electric and magnetic dipolar characteristics and pave the way for greater flexibility in controlling radiation patterns from quantum emitters. 
    more » « less
  3. This work reports on a metasurface based on optical nanoantennas made of van der Waals material hexagonal boron nitride. The optical nanoantenna made of hyperbolic material was shown to support strong localized resonant modes stemming from the propagating high-k waves in the hyperbolic material. An analytical approach was used to determine the mode profile and type of cuboid nanoantenna resonances. An electric quadrupolar mode was demonstrated to be associated with a resonant magnetic response of the nanoantenna, which resembles the induction of resonant magnetic modes in high-refractive-index nanoantennas. The analytical model accurately predicts the modes of cuboid nanoantennas due to the strong boundary reflections of the high-k waves, a capability that does not extend to plasmonic or high-refractive-index nanoantennas, where the imperfect reflection and leakage of the mode from the cavity complicate the analysis. In the reported metasurface, excitations of the multipolar resonant modes are accompanied by directional scattering and a decrease in the metasurface reflectance to zero, which is manifested as the resonant Kerker effect. Van der Waals nanoantennas are envisioned to support localized resonances and can become an important functional element of metasurfaces and transdimensional photonic components. By designing efficient subwavelength scatterers with high-quality-factor resonances, this work demonstrates that this type of nanoantenna made of naturally occurring hyperbolic material is a viable substitute for plasmonic and all-dielectric nanoantennas in developing ultra-compact photonic components. 
    more » « less
  4. Chalcophosphate metasurfaces exhibit a significant electro-optic shift in multipolar resonances due to large electric-field-induced refractive index changes, obtainable with in-plane or out-of-plane biasing. 
    more » « less
  5. Metasurfaces, composed of engineered nanoantennas, enable unprecedented control over electromagnetic waves by leveraging multipolar resonances to tailor light–matter interactions. This review explores key physical mechanisms that govern their optical properties, including the role of multipolar resonances in shaping metasurface responses, the emergence of bound states in the continuum (BICs) that support high-quality factor modes, and the Purcell effect, which enhances spontaneous emission rates at the nanoscale. These effects collectively underpin the design of advanced photonic devices with tailored spectral, angular, and polarization-dependent properties. This review discusses recent advances in metasurfaces and applications based on them, highlighting research that employs full-wave numerical simulations, analytical and semi-analytic techniques, multipolar decomposition, nanofabrication, and experimental characterization to explore the interplay of multipolar resonances, bound and quasi-bound states, and enhanced light–matter interactions. A particular focus is given to metasurface-enhanced photodetectors, where structured nanoantennas improve light absorption, spectral selectivity, and quantum efficiency. By integrating metasurfaces with conventional photodetector architectures, it is possible to enhance responsivity, engineer photocarrier generation rates, and even enable functionalities such as polarization-sensitive detection. The interplay between multipolar resonances, BICs, and emission control mechanisms provides a unified framework for designing next-generation optoelectronic devices. This review consolidates recent progress in these areas, emphasizing the potential of metasurface-based approaches for high-performance sensing, imaging, and energy-harvesting applications. 
    more » « less