A bstract We study minimum area surfaces associated with a region, R , of an internal space. For example, for a warped product involving an asymptotically AdS space and an internal space K , the region R lies in K and the surface ends on ∂R . We find that the result of Graham and Karch can be avoided in the presence of warping, and such surfaces can sometimes exist for a general region R . When such a warped product geometry arises in the IR from a higher dimensional asymptotic AdS, we argue that the area of the surface can be related to the entropy arising from entanglement of internal degrees of freedom of the boundary theory. We study several examples, including warped or direct products involving AdS 2 , or higher dimensional AdS spaces, with the internal space, K = R m , S m ; Dp brane geometries and their near horizon limits; and several geometries with a UV cut-off. We find that such RT surfaces often exist and can be useful probes of the system, revealing information about finite length correlations, thermodynamics and entanglement. We also make some preliminary observations about the role such surfaces can play in bulk reconstruction, and their relation to subalgebras of observables in the boundary theory.
more »
« less
Operators in the internal space and locality
A<sc>bstract</sc> Realizations of the holographic correspondence in String/M theory typically involve spacetimes of the formAdS×YwhereYis some internal space which geometrizes an internal symmetry of the dual field theory, hereafter referred to as an “Rsymmetry”. It has been speculated that areas of Ryu-Takayanagi surfaces anchored on the boundary of a subregion ofY, and smeared over the base space of the dual field theory, quantify entanglement of internal degrees of freedom. A natural candidate for the corresponding operators are linear combinations of operators with definiteRcharge with coefficients given by the “spherical harmonics” of the internal space: this is natural when the product spaces appear as IR geometries of higher dimensional AdS spaces. We study clustering properties of such operators both for pureAdS×Yand for flow geometries, whereAdS×Yarises in the IR from a different spacetime in the UV, for example higher dimensional AdS or asymptotically flat spacetime. We show, in complete generality, that the two point functions of such operators separated along the internal space obey clustering properties at scales sufficiently larger than the AdS scale. For non-compactY, this provides a notion of approximate locality. WhenYis compact, clustering happens only when the size ofYis parametrically larger than the AdS scale. This latter situation is realized in flow geometries where the product spaces arise in the IR from an asymptotically AdS geometry at UV, but not typically when they arise near black hole horizons in asymptotically flat spacetimes. We discuss the significance of this result for entanglement and comment on the role of color degrees of freedom.
more »
« less
- Award ID(s):
- 2111673
- PAR ID:
- 10651941
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 8
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.more » « less
-
Late-time dominance of entanglement islands plays a critical role in addressing the information paradox for black holes in AdS coupled to an asymptotic non-gravitational bath. A natural question is how this observation can be extended to gravitational systems. To gain insight into this question, we explore how this story is modified within the context of Karch-Randall braneworlds when we allow the asymptotic bath to couple to dynamical gravity. We find that because of the inability to separate degrees of freedom by spatial location when defining the radiation region, the entanglement entropy of radiation emitted into the bath is a time-independent constant, consistent with recent work on black hole information in asymptotically flat space. If we instead consider an entanglement entropy between two sectors of a specific division of the Hilbert space, we then find non-trivial time-dependence, with the Page time a monotonically decreasing function of the brane angle---provided both branes are below a particular angle. However, the properties of the entropy depend discontinuously on this angle, which is the first example of such discontinuous behavior for an AdS brane in AdS space.more » « less
-
A<sc>bstract</sc> In four-dimensional asymptotically flat spacetimes, an infinite tower of soft graviton modes is known to generate the symmetry algebra of w1+∞ at tree-level. Here we demonstrate that the symmetry action follows from soft graviton theorems and acts non-trivially on massive scalar particles. By generalizing previous analyses that were specifically tailored to the scattering of massless particles, our results clarify that w1+∞ symmetry is a universal feature of tree-level gravitational scattering in four-dimensional asymptotically flat spacetimes and originates from minimally-coupled gravitational interactions. In addition, we show that the w1+∞ symmetry acts non-diagonally on massive states by mixing an infinite number of conformal families. We also present a concrete example of non-local behavior on the celestial sphere in the presence of massive scattering states.more » « less
-
A<sc>bstract</sc> In AdS/CFT, observables on the boundary are invariant under renormalization group (RG) flow in the bulk. In this paper, we study holographic entanglement entropy under bulk RG flow and find that it is indeed invariant. We focus on tree-level RG flow, where massive fields in a UV theory are integrated out to give the IR theory. We explicitly show that in several simple examples, holographic entanglement entropy calculated in the UV theory agrees with that calculated in the IR theory. Moreover, we give an argument for this agreement to hold for general tree-level RG flow. Along the way, we generalize the replica method of calculating holographic entanglement entropy to bulk theories that include matter fields with nonzero spin.more » « less
An official website of the United States government

