A<sc>bstract</sc> We establish an equivalence between two different quantum quench problems, the joining local quantum quench and the Möbius quench, in the context of (1 + 1)-dimensional conformal field theory (CFT). Here, in the former, two initially decoupled systems (CFTs) on finite intervals are joined att= 0. In the latter, we consider the system that is initially prepared in the ground state of the regular homogeneous Hamiltonian on a finite interval and, aftert= 0, let it time-evolve by the so-called Möbius Hamiltonian that is spatially inhomogeneous. The equivalence allows us to relate the time-dependent physical observables in one of these problems to those in the other. As an application of the equivalence, we construct a holographic dual of the Möbius quench from that of the local quantum quench. The holographic geometry involves an end-of-the-world brane whose profile exhibits non-trivial dynamics.
more »
« less
Exactly solvable floquet dynamics for conformal field theories in dimensions greater than two
A<sc>bstract</sc> We find classes of driven conformal field theories (CFT) ind+ 1 dimensions withd> 1, whose quench and floquet dynamics can be computed exactly. The setup is suitable for studying periodic drives, consisting of square pulse protocols for which Hamiltonian evolution takes place with different deformations of the original CFT Hamiltonian in successive time intervals. These deformations are realized by specific combinations of conformal generators with a deformation parameterβ; theβ< 1 (β> 1) Hamiltonians can be unitarily related to the standard (Lüscher-Mack) CFT Hamiltonians. The resulting time evolution can be then calculated by performing appropriate conformal transformations. Ford≤ 3 we show that the transformations can be easily obtained in a quaternion formalism. Evolution with such a single Hamiltonian yields qualitatively different time dependences of observables depending on the value ofβ, with exponential decays characteristic of heating forβ> 1, oscillations forβ< 1 and power law decays forβ= 1. This manifests itself in the behavior of the fidelity, unequal-time correlator, and the energy density at the end of a single cycle of a square pulse protocol with different hamiltonians in successive time intervals. When the Hamiltonians in a cycle involve generators of a single SU(1, 1) subalgebra we calculate the Floquet Hamiltonian. We show that one can get dynamical phase transitions for anyβby varying the time period of a cycle, where the system can go from a non-heating phase which is oscillatory as a function of the time period to a heating phase with an exponentially damped behavior. Our methods can be generalized to other discrete and continuous protocols. We also point out that our results are expected to hold for a broader class of QFTs that possesses an SL(2,C) symmetry with fields that transform as quasi-primaries under this. As an example, we briefly comment on celestial CFTs in this context.
more »
« less
- Award ID(s):
- 2111673
- PAR ID:
- 10651942
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 9
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study the generation of the baryon asymmetry in Composite Higgs models with partial compositeness of the Standard Model (SM) fermions and heavy right-handed neutrinos, developing for the first time a complete picture of leptogenesis in that setup. The asymmetry is induced by the out of equilibrium decays of the heavy right-handed neutrinos into a plasma of the nearly conformal field theory (CFT), i.e. the deconfined phase of the Composite Higgs dynamics. This exotic mechanism, which we callConformal Leptogenesis, admits a reliable description in terms of a set of “Boltzmann equations” whose coefficients can be expressed in terms of correlation functions of the CFT. The asymmetry thus generated is subsequently affected by the supercooling resulting from the confining phase transition of the strong Higgs sector as well as by the washout induced by the resonances formed after the transition. Nevertheless, a qualitative description of the latter effects suggests that conformal leptogenesis can successfully reproduce the observed baryon asymmetry in a wide region of parameter space. A distinctive signature of our scenarios is a sizable compositeness forallthe generations of SM neutrinos, which is currently consistent with all constraints but may be within reach of future colliders.more » « less
-
Learning the Hamiltonian underlying a quantum many-body system in thermal equilibrium is a fundamental task in quantum learning theory and experimental sciences. To learn the Gibbs state of local Hamiltonians at any inverse temperature β, the state-of-the-art provable algorithms fall short of the optimal sample and computational complexity, in sharp contrast with the locality and simplicity in the classical cases. In this work, we present a learning algorithm that learns each local term of a n-qubit D-dimensional Hamiltonian to an additive error ϵ with sample complexity $$\tilde{O}\left(\frac{e^{\mathrm{poly}(\beta)}}{\beta^2\epsilon^2}\right)\log(n)$$. The protocol uses parallelizable local quantum measurements that act within bounded regions of the lattice and near-linear-time classical post-processing. Thus, our complexity is near optimal with respect to n, ϵ and is polynomially tight with respect to β. We also give a learning algorithm for Hamiltonians with bounded interaction degree with sample and time complexities of similar scaling on n but worse on β, ϵ. At the heart of our algorithm is the interplay between locality, the Kubo-Martin-Schwinger condition, and the operator Fourier transform at arbitrary temperatures.more » « less
-
A bstract We study the boundary critical behavior of conformal field theories of interacting fermions in the Gross-Neveu universality class. By a Weyl transformation, the problem can be studied by placing the CFT in an anti de Sitter space background. After reviewing some aspects of free fermion theories in AdS, we use both large N methods and the epsilon expansion near 2 and 4 dimensions to study the conformal boundary conditions in the Gross-Neveu CFT. At large N and general dimension d , we find three distinct boundary conformal phases. Near four dimensions, where the CFT is described by the Wilson-Fisher fixed point of the Gross-Neveu-Yukawa model, two of these phases correspond respectively to the choice of Neumann or Dirichlet boundary condition on the scalar field, while the third one corresponds to the case where the bulk scalar field acquires a classical expectation value. One may flow between these boundary critical points by suitable relevant boundary deformations. We compute the AdS free energy on each of them, and verify that its value is consistent with the boundary version of the F-theorem. We also compute some of the BCFT observables in these theories, including bulk two-point functions of scalar and fermions, and four-point functions of boundary fermions.more » « less
-
The non-Hermitian models, which are symmetric under parity (P) and time-reversal (T) operators, are the cornerstone for the fabrication of new ultra-sensitive optoelectronic devices. However, providing the gain in such systems usually demands precise control of nonlinear processes, limiting their application. In this paper, to bypass this obstacle, we introduce a class of time-dependent non-Hermitian Hamiltonians (not necessarily Floquet) that can describe a two-level system with temporally modulated on-site potential and couplings. We show that implementing an appropriate non-Unitary gauge transformation converts the original system to an effective one with a balanced gain and loss. This will allow us to derive the evolution of states analytically. Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hiddenPT-symmetry potentially without imaginary onsite amplification and absorption mechanism to obtain an exceptional point.more » « less
An official website of the United States government

