Abstract Nanophotonics allows to employ light-matter interaction to induce nonlinear optical effects and realize non-conventional memory and computation capabilities, however to date, light-liquid interaction was not considered as a potential mechanism to achieve computation on a nanoscale. Here, we experimentally demonstrate self-induced phase change effect which relies on the coupling between geometric changes of thin liquid film to optical properties of photonic waveguide modes, and then employ it for neuromorphic computing. In our optofluidic silicon photonics system we utilize thermocapillary-based deformation of thin liquid film capable to induce nonlinear effect which is more than one order of magnitude higher compared to the more traditional heat-based thermo-optical effect, and allowing operation as a nonlinear actuator and memory element, both residing at the same compact spatial region. The resulting dynamics allows to implement Reservoir Computing at spatial region which is approximately five orders of magnitude smaller compared to state-of-the-art experimental liquid-based systems.
more »
« less
Principled neuromorphic reservoir computing
Reservoir computing advances the intriguing idea that a nonlinear recurrent neural circuit—the reservoir—can encode spatio-temporal input signals to enable efficient ways to perform tasks like classification or regression. However, recently the idea of a monolithic reservoir network that simultaneously buffers input signals and expands them into nonlinear features has been challenged. A representation scheme in which memory buffer and expansion into higher-order polynomial features can be configured separately has been shown to significantly outperform traditional reservoir computing in prediction of multivariate time-series. Here we propose a configurable neuromorphic representation scheme that provides competitive performance on prediction, but with significantly better scaling properties than directly materializing higher-order features as in prior work. Our approach combines the use of randomized representations from traditional reservoir computing with mathematical principles for approximating polynomial kernels via such representations. While the memory buffer can be realized with standard reservoir networks, computing higher-order features requires networks of ‘Sigma-Pi’ neurons, i.e., neurons that enable both summation as well as multiplication of inputs. Finally, we provide an implementation of the memory buffer and Sigma-Pi networks on Loihi 2, an existing neuromorphic hardware platform.
more »
« less
- Award ID(s):
- 2211387
- PAR ID:
- 10652059
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature communications
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neuromorphic computing systems promise high energy efficiency and low latency. In particular, when integrated with neuromorphic sensors, they can be used to produce intelligent systems for a broad range of applications. An event‐based camera is such a neuromorphic sensor, inspired by the sparse and asynchronous spike representation of the biological visual system. However, processing the event data requires either using expensive feature descriptors to transform spikes into frames, or using spiking neural networks (SNNs) that are expensive to train. In this work, a neural network architecture is proposed, reservoir nodes‐enabled neuromorphic vision sensing network (RN‐Net), based on dynamic temporal encoding by on‐sensor reservoirs and simple deep neural network (DNN) blocks. The reservoir nodes enable efficient temporal processing of asynchronous events by leveraging the native dynamics of the node devices, while the DNN blocks enable spatial feature processing. Combining these blocks in a hierarchical structure, the RN‐Net offers efficient processing for both local and global spatiotemporal features. RN‐Net executes dynamic vision tasks created by event‐based cameras at the highest accuracy reported to date at one order of magnitude smaller network size. The use of simple DNN and standard backpropagation‐based training rules further reduces implementation and training costs.more » « less
-
null (Ed.)Deep Reservoir Computing has emerged as a new paradigm for deep learning, which is based around the reservoir computing principle of maintaining random pools of neurons combined with hierarchical deep learning. The reservoir paradigm reflects and respects the high degree of recurrence in biological brains, and the role that neuronal dynamics play in learning. However, one issue hampering deep reservoir network development is that one cannot backpropagate through the reservoir layers. Recent deep reservoir architectures do not learn hidden or hierarchical representations in the same manner as deep artificial neural networks, but rather concatenate all hidden reservoirs together to perform traditional regression. Here we present a novel Deep Reservoir Network for time series prediction and classification that learns through the non-differentiable hidden reservoir layers using a biologically-inspired backpropagation alternative called Direct Feedback Alignment, which resembles global dopamine signal broadcasting in the brain. We demonstrate its efficacy on two real world multidimensional time series datasets.more » « less
-
A variety of advanced machine learning and deep learning algorithms achieve state-of-the-art performance on various temporal processing tasks. However, these methods are heavily energy inefficient—they run mainly on the power hungry CPUs and GPUs. Computing with Spiking Networks, on the other hand, has shown to be energy efficient on specialized neuromorphic hardware, e.g., Loihi, TrueNorth, SpiNNaker, etc. In this work, we present two architectures of spiking models, inspired from the theory of Reservoir Computing and Legendre Memory Units, for the Time Series Classification (TSC) task. Our first spiking architecture is closer to the general Reservoir Computing architecture and we successfully deploy it on Loihi; the second spiking architecture differs from the first by the inclusion of non-linearity in the readout layer. Our second model (trained with Surrogate Gradient Descent method) shows that non-linear decoding of the linearly extracted temporal features through spiking neurons not only achieves promising results, but also offers low computation-overhead by significantly reducing the number of neurons compared to the popular LSM based models—more than 40x reduction with respect to the recent spiking model we compare with. We experiment on five TSC datasets and achieve new SoTA spiking results (—as much as 28.607% accuracy improvement on one of the datasets), thereby showing the potential of our models to address the TSC tasks in a green energy-efficient manner. In addition, we also do energy profiling and comparison on Loihi and CPU to support our claims.more » « less
-
null (Ed.)This work presents an approach to delay-based reservoir computing (RC) at the sensor level without input modulation. It employs a time-multiplexed bias to maintain transience while utilizing either an electrical signal or an environmental signal (such as acceleration) as an unmodulated input signal. The proposed approach enables RC carried out by sufficiently nonlinear sensory elements, as we demonstrate using a single electrostatically actuated microelectromechanical system (MEMS) device. The MEMS sensor can perform colocalized sensing and computing with fewer electronics than traditional RC elements at the RC input (such as analog-to-digital and digital-to-analog converters). The performance of the MEMS RC is evaluated experimentally using a simple classification task, in which the MEMS device differentiates between the profiles of two signal waveforms. The signal waveforms are chosen to be either electrical waveforms or acceleration waveforms. The classification accuracy of the presented MEMS RC scheme is found to be over 99%. Furthermore, the scheme is found to enable flexible virtual node probing rates, allowing for up to 4× slower probing rates, which relaxes the requirements on the system for reservoir signal sampling. Finally, our experiments show a noise-resistance capability for our MEMS RC scheme.more » « less
An official website of the United States government

