Colloidal gelation phase diagram has been traditionally characterized using three key factors: particle volume fraction, strength of attraction, and range of attraction. While there's a rich body of literature on the role of attraction strength and particle volume fraction, majority of studies have been limited to short range interactions. Using Brownian dynamics simulations, we explored the effect that the range of attractions has on the microstructure and dynamics of both weakly and strongly attractive colloidal systems. Although gelation occurs significantly faster at high attraction strength, by an order of magnitude compared to low strength, we did not observe any clear trend in gelation-rate with respect to a change in the range of interaction. However, as the attraction range increases in both systems, the final structure undergoes a transition from a single connected network to a fluid of dense clusters. This results in a new gelation phase boundary for long range attractive colloids.
more »
« less
This content will become publicly available on October 22, 2026
Emergence and evolution of a particulate network during gelation and coarsening of attractive colloids
The process of gelation in attractive colloids involves formation of an interconnected and percolated network, followed by its coarsening and maturation. In this study, we analyze the formation and evolution of this particulate network and introduce deterministic quantitative measures to evaluate the key transition points. The rate of change in the number of colloidal clusters before and after percolation can be directly used to identify gelation as a continuous second order phase transition. Simultaneously the diameter of the particle network exhibits a distinguishable maxima, marking the precise moment of percolation transition. However, local measures of the structure such as coordination number do not reflect on the percolation. Alternatively, accumulative number of unique particle contacts can be used to indicate the long time coarsening of the particulate structure. Global structural measures such as Voronoi volume distribution and its changes over time can also be used to distinctly mark these two regimes. Finding a consistent behavior across varying attraction strength levels and volume fractions of colloids, we propose that percolation and coarsening of the particulate gels can be viewed as two distinct transitions with clearly distinguishable structural demarcations.
more »
« less
- Award ID(s):
- 2104869
- PAR ID:
- 10652099
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 21
- Issue:
- 41
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 7904 to 7916
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Colloidal gels exhibit solid-like behavior at vanishingly small fractions of solids, owing to ramified space-spanning networks that form due to particle–particle interactions. These networks give the gel its rigidity, and with stronger attractions the elasticity grows as well. The emergence of rigidity can be described through a mean field approach; nonetheless, fundamental understanding of how rigidity varies in gels of different attractions is lacking. Moreover, recovering an accurate gelation phase diagram based on the system’s variables has been an extremely challenging task. Understanding the nature of colloidal clusters, and how rigidity emerges from their connections is key to controlling and designing gels with desirable properties. Here, we employ network analysis tools to interrogate and characterize the colloidal structures. We construct a particle-level network, having all the spatial coordinates of colloids with different attraction levels, and also identify polydisperse rigid fractal clusters using a Gaussian mixture model, to form a coarse-grained cluster network that distinctly shows main physical features of the colloidal gels. A simple mass-spring model then is used to recover quantitatively the elasticity of colloidal gels from these cluster networks. Interrogating the resilience of these gel networks shows that the elasticity of a gel (a dynamic property) is directly correlated to its cluster network’s resilience (a static measure). Finally, we use the resilience investigations to devise [and experimentally validate] a fully resolved phase diagram for colloidal gelation, with a clear solid–liquid phase boundary using a single volume fraction of particles well beyond this phase boundary.more » « less
-
We report the effect of particle surface roughness on creep deformation and subsequent strain recovery in dense colloidal suspensions. The suspensions are composed of hard-spherelike poly(methyl methacrylate) smooth (S) and rough (R) colloids with particle volume fractions ϕS = 0.64 ± 0.01 and ϕR = 0.56 ± 0.01, corresponding to a distance of 3.0% and 3.4% based on their jamming volume fractions (ϕJS=0.66±0.01, ϕJR=0.58±0.01). The suspensions are subject to a range of shear stresses (0.01–0.07 Pa) above and below the yield stress values of the two suspensions (σyS=0.035Pa, σyR=0.02Pa). During creep, suspensions of rough colloids exhibit four to five times higher strain deformation compared to smooth colloids, irrespective of the applied stress. The interlocking of surface asperities in rough colloids is likely to generate a heterogeneous microstructure, favoring dynamic particle activity and percolation of strain heterogeneities, therefore resulting in higher magnitude of strain deformation and an earlier onset of steady flow. Strain recovery after the cessation of stress reveals a nonmonotonic recoverable strain for rough colloids, where the peak recoverable strain is observed near the yield stress, followed by a steep decline with increasing stress. This type of response suggests that frictional constraints between geometrically frustrated interlocking contacts can serve as particle bonds capable of higher elastic recovery but only near the yield stress. Understanding how particle roughness affects macroscopic creep and recovery is useful in designing yield stress fluids for additive manufacturing and product formulations.more » « less
-
In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolecular species, which may subsequently undergo liquid–liquid phase separation and a further transition into a gel-like state. In the present work, we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent translational and rotational diffusivities.more » « less
-
Origami structures with a large number of excess folds are capable of storing distinguishable geometric states that are energetically equivalent. As the number of excess folds is reduced, the system has fewer equivalent states and can eventually become rigid. We quantify this transition from a floppy to a rigid state as a function of the presence of folding constraints in a classic origami tessellation, Miura-ori. We show that in a fully triangulated Miura-ori that is maximally floppy, adding constraints via the elimination of diagonal folds in the quads decreases the number of degrees of freedom in the system, first linearly and then nonlinearly. In the nonlinear regime, mechanical cooperativity sets in via a redundancy in the assignment of constraints, and the degrees of freedom depend on constraint density in a scale- invariant manner. A percolation transition in the redundancy in the constraints as a function of constraint density suggests how excess folds in an origami structure can be used to store geometric information in a scale-invariant way.more » « less
An official website of the United States government
