skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104869

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The process of gelation in attractive colloids involves formation of an interconnected and percolated network, followed by its coarsening and maturation. In this study, we analyze the formation and evolution of this particulate network and introduce deterministic quantitative measures to evaluate the key transition points. The rate of change in the number of colloidal clusters before and after percolation can be directly used to identify gelation as a continuous second order phase transition. Simultaneously the diameter of the particle network exhibits a distinguishable maxima, marking the precise moment of percolation transition. However, local measures of the structure such as coordination number do not reflect on the percolation. Alternatively, accumulative number of unique particle contacts can be used to indicate the long time coarsening of the particulate structure. Global structural measures such as Voronoi volume distribution and its changes over time can also be used to distinctly mark these two regimes. Finding a consistent behavior across varying attraction strength levels and volume fractions of colloids, we propose that percolation and coarsening of the particulate gels can be viewed as two distinct transitions with clearly distinguishable structural demarcations. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026