Abstract Lightning is a common source of disturbance, but its ecological effects in tropical forests are largely undescribed. Here we quantify the contributions of lightning strikes to forest turnover and plant mortality in a lowland Panamanian forest using a real‐time lightning monitoring system. We examined 2,195 lightning‐damaged trees distributed among 93 different strikes. None exhibited scars or fires. On average, each strike disturbed 451 m2(95% CI: 365–545 m2), created a canopy gap of 304 m2(95% CI 198–454 m2), and caused 7.36 Mg of woody biomass turnover (CI: 5.36–9.65 Mg). Cumulatively, we estimate that lightning strikes in this forest create canopy gaps equaling 0.39% of forest canopy area, representing 20.1% of annual gap area formation, and are responsible for 16.1% of total woody biomass turnover. Trees, lianas, herbaceous climbers and epiphytes were killed by lightning at rates 8–29 times greater than their baseline mortality rates in undamaged control sites. The likelihood of lightning‐caused death was higher for trees, lianas, and herbaceous climbers than for epiphytes, and high liana mortality suggests that lightning is an important driver of liana turnover. These results indicate that lightning influences gap dynamics, plant community composition and carbon storage capacity in some tropical forests.
more »
« less
This content will become publicly available on September 1, 2026
Quantifying Patterns of Lightning‐Caused Canopy Disturbances via Integration of Drone Imagery and Field Surveys
ABSTRACT Lightning is an important agent of tree mortality and gap formation. Here we quantified spatial and temporal patterns of lightning‐caused canopy disturbance in a 50‐ha plot in Panama using monthly drone imagery, and compared these patterns with field measurements of disturbance severity and spatial extent. Of 22 lightning strikes that we tracked, the impacts of 18 were monitored for at least 12 months (range of 17–50 months), and 67% of these 18 strikes led to canopy disturbances. The mean time for the first and last canopy disturbance to appear post‐strike was 8.2 months (range: 0.8–14 months) and 14.6 months (range: 0.8–23.9 months), respectively. Canopy disturbances were generally highly irregular in shape (i.e., not circular), and clustered around the rooting point of the directly struck tree. A mean of 43% (± 19%) of the total lightning‐associated canopy disturbance area was within 10 m of the rooting point, whereas only 3% (± 5%) occurred 30–40 m from this point. Drone‐based measurements of canopy disturbance area and volume were good predictors of variation in ground‐estimated dead biomass (r2 = 0.48 and 0.46, respectively), reflecting their strong association with overstory dead biomass (r2 = 0.42 and 0.41, respectively). The total drone‐estimated canopy disturbance area was 49% of the ground‐estimated canopy disturbance area. Thus, lightning typically causes canopy disturbances that are detectable with drone imagery despite their irregular shape, and drone‐detected gap formation lags 8–15 months poststrike, potentially disconnecting drone‐detected disturbances from their ultimate cause.
more »
« less
- PAR ID:
- 10652145
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Biotropica
- Volume:
- 57
- Issue:
- 5
- ISSN:
- 0006-3606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tree death due to lightning influences tropical forest carbon cycling and tree community dynamics. However, the distribution of lightning damage among trees in forests remains poorly understood.We developed models to predict direct and secondary lightning damage to trees based on tree size, crown exposure and local forest structure. We parameterized these models using data on the locations of lightning strikes and censuses of tree damage in strike zones, combined with drone‐based maps of tree crowns and censuses of all trees within a 50‐ha forest dynamics plot on Barro Colorado Island, Panama.The likelihood of a direct strike to a tree increased with larger exposed crown area and higher relative canopy position (emergent > canopy >>> subcanopy), whereas the likelihood of secondary lightning damage increased with tree diameter and proximity to neighbouring trees. The predicted frequency of lightning damage in this mature forest was greater for tree species with larger average diameters.These patterns suggest that lightning influences forest structure and the global carbon budget by non‐randomly damaging large trees. Moreover, these models provide a framework for investigating the ecological and evolutionary consequences of lightning disturbance in tropical forests.Synthesis. Our findings indicate that the distribution of lightning damage is stochastic at large spatial grain and relatively deterministic at smaller spatial grain (<15 m). Lightning is more likely to directly strike taller trees with large crowns and secondarily damage large neighbouring trees that are closest to the directly struck tree. The results provide a framework for understanding how lightning can affect forest structure, forest dynamics and carbon cycling. The resulting lightning risk model will facilitate informed investigations into the effects of lightning in tropical forests.more » « less
-
Abstract Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning‐damaged trees are a consistent resource for tropical saproxylic (i.e., dead wood‐dependent) organisms, but patterns of consumer colonization and succession following lightning strikes are not known. Here, we documented the occurrence of four common consumer taxa spanning multiple trophic levels—beetles,Aztecaants, termites, and fungi—in lightning strike sites and nearby undamaged control sites over time in a lowland forest of Panama. Beetle abundance was 10 times higher in lightning strike sites than in paired control sites, and beetle assemblages were compositionally distinct. Those in strike sites were initially dominated by bark and ambrosia beetles (Curculionidae: Platypodinae, Scolytinae); bark and ambrosia beetles, and predaceous taxa increased in abundance relatively synchronously. Beetle activity and fungal fruiting bodies, respectively, were 3.8 and 12.2 times more likely to be observed in lightning‐damaged trees in strike sites versus undamaged trees in paired control sites, whereas the occurrence probabilities ofAztecaants and termites were similar between damaged trees in lightning strike sites and undamaged trees in control sites. Tree size also was important; larger dead trees in strike sites were more likely to support beetles, termites, and fungal fruiting bodies, and larger trees—regardless of mortality status—were more likely to hostAzteca. Beetle presence was associated with higher rates of subsequent fungal presence, providing some evidence of beetle‐associated priority effects on colonization patterns. These results suggest that lightning plays a key role in supporting tropical insect and fungal consumers by providing localized patches of suitable habitat. Any climate‐driven changes in lightning frequency in tropical forests will likely affect a broad suite of consumer organisms, potentially altering ecosystem‐level processes.more » « less
-
Abstract Lightning is a major agent of disturbance, but its ecological effects in the tropics are unquantified. Here we used ground and satellite sensors to quantify the geography of lightning strikes in terrestrial tropical ecosystems, and to evaluate whether spatial variation in lightning frequency is associated with variation in tropical forest structure and dynamics. Between 2013 and 2018, tropical terrestrial ecosystems received an average of 100.4 million lightning strikes per year, and the frequency of strikes was spatially autocorrelated at local‐to‐continental scales. Lightning strikes were more frequent in forests, savannas, and urban areas than in grasslands, shrublands, and croplands. Higher lightning frequency was positively associated with woody biomass turnover and negatively associated with aboveground biomass and the density of large trees (trees/ha) in forests across Africa, Asia, and the Americas. Extrapolating from the only tropical forest study that comprehensively assessed tree damage and mortality from lightning strikes, we estimate that lightning directly damages c. 832 million trees in tropical forests annually, of which c. 194 million die. The similarly high lightning frequency in tropical savannas suggests that lightning also influences savanna tree mortality rates and ecosystem processes. These patterns indicate that lightning‐caused disturbance plays a major and largely unappreciated role in pantropical ecosystem dynamics and global carbon cycling.more » « less
-
Summary Lightning is an important agent of plant mortality and disturbance in forests. Lightning‐caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e. tree damage and death), but we do not know how this variation is influenced by forest structure and plant composition.We used a novel lightning detection system to quantify how lianas influenced the severity and spatial extent (i.e. area) of lightning disturbance using 78 lightning strikes in central Panama.The local density of lianas (measured as liana basal area) was positively associated with the number of trees killed and damaged by lightning, and patterns of plant damage indicated that this occurred because lianas facilitated more electrical connections from large to small trees. Liana presence, however, did not increase the area of the disturbance. Thus, lianas increased the severity of lightning disturbance by facilitating damage to additional trees without influencing the footprint of the disturbance.These findings indicate that lianas spread electricity to damage and kill understory trees that otherwise would survive a strike. As liana abundance increases in tropical forests, their negative effects on tree survival with respect to the severity of lightning‐related tree damage and death are likely to increase.more » « less
An official website of the United States government
