skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Expanding Computer Science Education in Rural Areas: Impact of Teacher Training on Teachers’ Identity, Commitment, Confidence and Competence
The lack of computer science education in rural areas presents unique challenges in the present pursuit of achieving equitable access to computer science education. The increase in the recognition of the need for computer science education comes with a need for inclusion of rural areas, and a corresponding increase in the demand of competent computer science teachers and educators. Teacher training programs play an important role in meeting these demands. This paper evaluates the impact of a teacher training program with focus on professional identity, commitment, confidence and competence as it relates to the teaching of computer science. The research includes teachers from rural, suburban and town locales enrolled in three separate semester courses. Through a mixed-method design, it uses quantitative data obtained through surveys taken prior to and at the completion of the training program to measure the impact. A combination of p-values and effect sizes were used to measure the impact of the teacher training programs. The survey covers three different domains - Teacher and Computing Identity, Rural Identity and Teacher Mindset, and lastly, Teaching Perceptions and Computational Thinking. Qualitative data gathered through reflective journals provides insights into teachers’ backgrounds and teaching experiences as well as anticipated professional growth. Following the training, findings show that rural teachers reported positive shifts in their identities and teaching competencies and are more likely to advocate for more students to take computer science courses. Teachers from the rural locales also showed a marked improvement in confidence and commitment to teaching computer science.  more » « less
Award ID(s):
2216625
PAR ID:
10652161
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ; ;  
Publisher / Repository:
ASEE Conferences
Date Published:
Subject(s) / Keyword(s):
computer science education teacher training K-12 rural identity computing identity
Format(s):
Medium: X
Location:
Montreal, Quebec
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Motivation: Recent efforts to expand K-12 computer science education highlight the great need for well-prepared computer science (CS) teachers. Teacher identity theory offers a particular conceptual lens for us to understand computer science teacher preparation and professional development. The emerging literature suggests that teacher identity is central to sustaining motivation, efficacy, job satisfaction, and commitment, and these attributes are crucial in determining teacher retention. While the benefits associated with a strong sense of teacher identity are great, teachers face unique challenges and tensions in developing their professional identity for teaching computer science. Objectives: This exploratory study attempts to operationalize computer science teacher identity through discussing the potential domains, proposing and testing a quantitative instrument for assessing computer science teachers’ professional identity. Method: We first discussed the potential domains of computer science teacher identity based on recent teacher identity literature and considerations on some unique challenges for computer science teachers. Then we proposed the computer science teacher identity scale, which was piloted through a national K-12 computer science teacher survey with 3,540 completed responses. The survey results were analyzed with a series of factor analyses to test the internal structure of the computer science teacher identity scale. Results: Our analyses reveal a four-factor solution for the computer science teacher identity scale, which is composed of CS teaching commitment, CS pedagogical confidence, confidence to engage students, and sense of community/belonging. There were significant differences among the teachers with different computer science teaching experiences. In general, teachers with more computer science teaching experience had higher computer science teacher identity scores on all four factors. Discussion: The four-factor model along with a large national dataset invites a deeper analysis of the data and can provide important benchmarks. Such an instrument can be used to explore developmental patterns in computer science teacher identity, and function as a pedagogical tool to provoke discussion and reflection among teachers about their professional development. This study may also contribute to understanding computer science teachers’ professional development needs and inform efforts to prepare, develop, and retain computer science teachers. 
    more » « less
  2. Broadening participation in computer science (CS) for primary/elementary students is a growing movement, spurred by computing workforce demands and the need for younger students to develop skills in problem solving and critical/computational thinking. However, offering computer science instruction at this level is directly related to the availability of teachers prepared to teach the subject. Unfortunately, there are relatively few primary/elementary school teachers who have received formal training in computer science, and they often self-report a lack of CS subject matter expertise. Teacher development is a key factor to address these issues, and this paper describes professional development strategies and empirical impacts of a summer institute that included two graduate courses and a series of Saturday workshops during the subsequent academic year. Key elements included teaching a high-level programing language (Python and JavaScript), integrating CS content and pedagogy instruction, and involving both experienced K-12 CS teachers and University faculty as instructors. Empirical results showed that this carefully structured PD that incorporated evidence-based elements of sufficient duration, teacher active learning and collaboration, modeling, practice, and feedback can successfully impact teacher outcomes. Results showed significant gains in teacher CS knowledge (both pedagogy and content), self-efficacy, and perception of CS value. Moderating results - examining possible differential effects depending on teacher gender, years of teaching CS, and geographic locale - showed that the PD was successful with experienced and less experienced teachers, with teachers from both rural and urban locales, and with both males and females. 
    more » « less
  3. A grand challenge of the computer science (CS) for all education movement is the preparation of thousands of teachers with high quality, accessible professional development (PD) that has evidence of improving teacher knowledge and pedagogical practices necessary to support the learning needs of diverse groups of students. While regional PD programs can provide in-person learning opportunities, geographic and time constraints often inhibit participation. This article shares findings from an online PD program modified from the existing in-person exploring computer science PD program to provide teachers a facilitated online learning community model to support their first year teaching the course. The findings from this study have implications for future directions in the CS education field, indicating that this model of online PD, heavily based on shared experience among participants, can increase CS teachers’ confidence in adapting and delivering lessons designed to be engaging and accessible to all students. 
    more » « less
  4. One of the critical barriers to increasing pre-collegiate computer science course offerings in the U.S. is a lack of qualified computer science teachers. Programs such as TEALS, a teacher preparation program pairing high school teachers with computing professionals to offer CS courses, provide opportunities for in-service teachers to gain experience teaching computer science. However, it is not clear whether the high school teachers develop sufficient pedagogical expertise to sustain high-quality computer science course offerings at their schools. Furthermore, the field of computer science education lacks valid and reliable ways of measuring pedagogical content knowledge (PCK), a construct that describes the knowledge teachers need for effective instruction. In this poster, the authors present these results from the first year of a three-year NSF grant to study how TEALS participation influences novice computer science teachers' PCK: 1) a theoretical framework describing the critical components of CS PCK, 2) the results of the first field test of a CS PCK assessment, including the psychometric properties of the assessment, and 3) a comparison of how teachers performed on the assessment at the beginning and end of their first year of computer science teaching and how they performed relative to their computing professional mentors. 
    more » « less
  5. Abstract In‐service teachers implementing a science, technology, engineering, and math (STEM) curriculum centered on computational thinking (CT) work with unique content and pedagogical experiences. Understanding how curriculum design and teacher professional development affect curriculum implementation can help researchers understand the critical aspects of supporting the teacher in “just right” ways to learn and teach an embedded CT curriculum. We qualitatively analyzed 22 teachers' discourse through a case study approach. We identified how CT is afforded and constrained through curriculum design and teacher professional development support. Teachers expressed that the supports that were critical to their confidence and perceived ability to teach CT were (a) a program that provides “just right” support, (b) a program that provides options and individualization, (c) an internal personal identity that embraces continual innovation and learning, and (d) an educational system that is encouraging and supportive of the effort and creativity it requires to implement innovative and intensive embedded CT programs. These findings can inform how to support teachers to integrate CT within existing STEM curricula as a core scientific and mathematical practice and to foster student interest in computer science. 
    more » « less