skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Online Professional Development for High School Computer Science Teachers: Features that Support an Equity-Based Professional Learning Community
A grand challenge of the computer science (CS) for all education movement is the preparation of thousands of teachers with high quality, accessible professional development (PD) that has evidence of improving teacher knowledge and pedagogical practices necessary to support the learning needs of diverse groups of students. While regional PD programs can provide in-person learning opportunities, geographic and time constraints often inhibit participation. This article shares findings from an online PD program modified from the existing in-person exploring computer science PD program to provide teachers a facilitated online learning community model to support their first year teaching the course. The findings from this study have implications for future directions in the CS education field, indicating that this model of online PD, heavily based on shared experience among participants, can increase CS teachers’ confidence in adapting and delivering lessons designed to be engaging and accessible to all students.  more » « less
Award ID(s):
1640117
PAR ID:
10191723
Author(s) / Creator(s):
Date Published:
Journal Name:
Computing in science engineering
Volume:
22
Issue:
5
ISSN:
1521-9615
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computer science (CS) education is plagued by a gender divide, with few girls and women participating in this high-status discipline. A proven strategy to broaden participation for girls and other underrepresented students interested in CS is the availability of teacher preparation that requires classroom teachers to grow their knowledge of CS content as well as the pedagogical practices that enhance inclusive learning opportunities for historically underrepresented students. This case study describes the design and impact of an Online Professional Development (PD) for CS teachers, a year-long PD program aimed at broadening participation in the United States. Using survey and observation data from more than 200 participants over three years in PD settings, this paper examines how the design of an online learning community model of PD provides an inclusive venue for teachers to examine their belief systems, develop inclusive pedagogical practices, and collectively transform the culture of CS classrooms to places that support all learners. Findings suggest that purposeful facilitation creates a transformative culture of “shared experience” whereby facilitators and groups of teachers engage in collaborative lesson planning and debriefing discussions, in both synchronous and asynchronous sessions. This case study can inform other online PD efforts aimed at broadening participation in computing. 
    more » « less
  2. Elementary schools provide a natural entry point to computer science (CS) education, yet elementary teachers spend most of their instructional time in literacy and math. One way to bring CS in elementary schools is through integrated approaches. In this work we present a professional development (PD) program that helps elementary teachers integrate CS with content and culturally relevant pedagogy to create accessible CS instruction. Qualitative data were collected from five teachers who attended the year-long program. Findings indicate that all teachers fully integrated CS with content and culturally-relevant pedagogy; however, such integration focused mostly on literacy and closely paralleled what was presented in PD. Implications are drawn regarding the design of PD programs that help teachers integrate CS in elementary classrooms. 
    more » « less
  3. In this work, we present a professional development (PD) program thatseeks to support elementary teachers as they integrate computer science (CS) with disciplinary content and culturally responsive pedagogy (CRP) to create inclusive environments that engage all students with computing. Using semi-structured interviews with 17 participants, we subsequently examine the content, technology tools, and CRP strategies that teachers perceived as represented in lessons designed during their participation in PD. Findings indicated that teachers integrated CS tools primarily with literacy and utilized CRP strategies commonly cited as instructional best practices (e.g., differentiation). Results have implications for future PD as well as research that seeks to support teacher learning about CS-integrated instruction. 
    more » « less
  4. There is a need for more K-12 computer science (CS) teachers. The need to scale teacher professional development (PD) points the CS education community towards virtual learning, and prior work shows that in-person PD with a diffuse schedule is more successful than condensed schedules. There is currently little research about virtual K-12 CS PD with a diffuse schedule. The pandemic served as a forced opportunity to explore the design and implementation of a diffuse-scheduled virtual PD for two small, equally-sized cohorts of middle school (grades 5-8) teachers; one from a metropolitan school district and another from across the United States. Our findings reveal several important post-pandemic design implications for future CS PD programs. First, the teachers’ CS knowledge and attitudes significantly increased in both cohorts. Second, there were no significant differences in attitudes or achievement between the cohorts. Third, the teachers in the virtual PD showed as good changes or better in attitude than those in a prior in-person PD. Finally, both cohorts were largely positive about the change from a few intensive PD days to a few hours a week for several weeks, even as they joined from vacations. 
    more » « less
  5. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less