Abstract Mg4(TiZnSn)3, a rare-earth-free Mg-based multi-principal element alloy, was synthesized via high-energy ball milling and cold compaction. Potentiodynamic polarization in 0.1 M NaCl revealed spontaneous passivation with a corrosion current density of 8.96 ± 0.83 µA/cm2and a nobler than Mg corrosion potential of -1058.35 ± 15.91 mVSCE. X-ray photoelectron spectroscopy confirmed the formation of a mixed oxide film containing ZnO, SnO2, and TiO2, contributing to the observed passivity. The alloy also exhibited improved mechanical performance, with a hardness of 5.06 ± 0.41 GPa and Young’s modulus of 109.24 ± 10 GPa. These results demonstrate that tailored multi-element alloying and powder metallurgy can synergistically enhance both corrosion resistance and mechanical properties in Mg alloys.
more »
« less
This content will become publicly available on July 1, 2026
Corrosion Behavior of MgTiZn and Mg4TiZn Alloys After Ball Milling and Subsequent Spark Plasma Sintering
Magnesium-containing multi-principal element alloys (MPEAs) are promising for lightweight applications due to their low density, high specific strength, and biocompatibility. This study examines two Mg-Ti-Zn alloy compositions, equal molar MgTiZn (TZ) and Mg4TiZn (4TZ), synthesized via ball milling followed by spark plasma sintering, focusing on their microstructures and corrosion behaviors. X-ray diffraction and transmission electron microscopy revealed the formation of intermetallic phases, including Ti2Zn and Mg21Zn25 in TZ, while 4TZ exhibited a predominantly Mg-rich phase. Potentiodynamic polarization and immersion tests in 0.1 M NaCl solution showed that both alloys had good corrosion resistance, with values of 3.65 ± 0.65 µA/cm2 for TZ and 4.58 ± 1.64 µA/cm2 for 4TZ. This was attributed to the formation of a TiO2-rich surface film in the TZ, as confirmed by X-ray photoelectron spectroscopy (XPS), which contributed to enhanced passivation and lower corrosion current density. Both alloys displayed high hardness, 5.5 ± 1.0 GPa for TZ and 5.1 ± 0.9 GPa for 4TZ, and high stiffness, with Young’s modulus values of 98.2 ± 11.2 GPa for TZ and 100.8 ± 9.6 GPa for 4TZ. These findings highlight the potential of incorporating Ti and Zn via mechanical alloying to improve the corrosion resistance of Mg-containing MPEAs and Mg-based alloys.
more »
« less
- Award ID(s):
- 2131441
- PAR ID:
- 10652298
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Materials
- Volume:
- 18
- Issue:
- 14
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 3279
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this work, nine nanocrystalline binary Mg alloys were synthesized by high-energy ball milling. The compositions, Mg-5 wt% M (M-Cr, Ge, Mn, Mo, Ta, Ti, V, Y, and Zn), were milled with the objective of achieving non-equilibrium alloying. The milled alloys were consolidated via cold compaction (CC) at 25°C and spark plasma sintering (SPS) at 300°C. X-ray diffraction (XRD) analysis indicated grain refinement below 100 nm, and the scanning electron microscopy revealed homogeneous microstructures for all compositions. XRD analysis revealed that most of the alloys showed a change in the lattice parameter, which indicates the formation of a solid solution. A significant increase in the hardness compared to unmilled Mg was observed for all of the alloys. The corrosion behavior was improved in all of the binary alloys compared to milled Mg. A significant decrease in the cathodic kinetics was evident due to Ge and Zn additions. The influence of the alloying elements on corrosion behavior has been categorized and discussed based on the electrochemical response of their respective binary Mg alloys.more » « less
-
Zinc (Zn) alloys, particularly those incorporating magnesium (Mg), have been explored as potential bioabsorbable metals. However, there is a continued need to enhance the corrosion characteristics of Zn-Mg alloys to fulfill the requirements for biodegradable implants. This work involves a corrosion behavior comparison between severe-plastic-deformation (SPD) processed cast Zn-Mg alloys and their hybrid counterparts, having equivalent nominal compositions. The SPD processing technique used was high-pressure torsion (HPT), and the corrosion behavior was studied as a function of the number of turns (1, 5, 15) for the Zn-3Mg (wt.%) alloy and hybrid and as a function of composition (Mg contents of 3, 10, 30 wt.%) for the hybrid after 15 turns. The results indicated that HPT led to multimodal grain size distributions of ultrafine Mg-rich grains containing MgZn2 and Mg2Zn11 nanoscale intermetallics in a matrix of coarser dislocation-free Zn-rich grains. A greater number of turns resulted in greater corrosion resistance because of the formation of the intermetallic phases. The HPT hybrid was more corrosion resistant than its alloy counterpart because it tended to form the intermetallics more readily than the alloy due to the inhomogeneous conditions of the materials before the HPT processing as well as the non-equilibrium conditions imposed during the HPT processing. The HPT hybrids with greater Mg contents were less corrosion resistant because the addition of Mg led to less noble behavior.more » « less
-
null (Ed.)Magnesium–yttrium-rare earth element alloys such as WE43 are potential candidates for future bioabsorbable orthopedic implant materials due to their biocompatibility, mechanical properties similar to human bone, and the ability to completely degrade in vivo . Unfortunately, the high corrosion rate of WE43 Mg alloys in physiological environments and subsequent loss of structural integrity limit the wide applications of these materials. In this study, the effect of chemical heterogeneity and microstructure on the corrosion resistance of two alloys with different metallurgical states was investigated: cast (as in traditional preparation) and as-deposited produced by magnetron sputtering. The corrosion behavior was studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in blood bank buffered saline solution. It was found that the as-deposited alloy showed more than one order of magnitude reduction in corrosion current density compared to the cast alloy, owing to the elimination of micro-galvanic coupling between the Mg matrix and the precipitates. The microstructure and formation mechanism of corrosion products formed on both alloys were discussed based on immersion tests and direct measurements of X-ray photoelectron spectrometry (XPS) and cross-sectional transmission electron microscopy (TEM) analysis.more » « less
-
Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability, biocompatibility, and impressive mechanical characteristics. However, their rapid in-vivo degradation presents challenges, notably in upholding mechanical integrity over time. This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy, ZX10. Utilizing rapid, cost-efficient characterization methods like X-ray diffraction and optical, we swiftly examine microstructural changes post-thermal treatment. Employing Pearson correlation coefficient analysis, we unveil the relationship between microstructural properties and critical targets (properties): hardness and corrosion resistance. Additionally, leveraging the least absolute shrinkage and selection operator (LASSO), we pinpoint the dominant microstructural factors among closely correlated variables. Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca2Mg6Zn3 phase in corrosion behavior. This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases. This thorough investigation furnishes valuable insights into the intricate interplay of processing, structure, and properties in magnesium alloys, thereby advancing the development of superior biodegradable implant materials.more » « less
An official website of the United States government
