Abstract In this work, we present the results of searches for signatures of dark matter decay or annihilation into Standard Model particles, and secret neutrino interactions with dark matter.Neutrinos could be produced in the decay or annihilation of galactic or extragalactic dark matter.Additionally, if an interaction between dark matter and neutrinos exists then dark matter will interact with extragalactic neutrinos.In particular galactic dark matter will induce an anisotropy in the neutrino sky if this interaction is present.We use seven and a half years of the High-Energy Starting Event (HESE) sample data, which measures neutrinos in the energy range of approximately 60 TeV to 10 PeV, to study these phenomena.This all-sky event selection is dominated by extragalactic neutrinos.For dark matter of ∼ 1 PeV in mass, we constrain the velocity-averaged annihilation cross section to be smaller than 10-23cm3/s for the exclusiveμ+μ-channel and 10-22cm3/s for the bb̅ channel.For the same mass, we constrain the lifetime of dark matter to be larger than 1028s for all channels studied, except for decaying exclusively to bb̅ where it is bounded to be larger than 1027s.Finally, we also search for evidence of astrophysical neutrinos scattering on galactic dark matter in two scenarios.For fermionic dark matter with a vector mediator, we constrain the dimensionless coupling associated with this interaction to be less than 0.1 for dark matter mass of 0.1 GeV and a mediator mass of 10-4GeV.In the case of scalar dark matter with a fermionic mediator, we constrain the coupling to be less than 0.1 for dark matter and mediator masses below 1 MeV.
more »
« less
This content will become publicly available on October 1, 2026
Superheavy dark matter from the natural inflation in light of the highest-energy astroparticle events
Abstract Superheavy dark matter has been attractive as a candidate of particle dark matter. We propose a “natural” particle model, in which the dark matter serves as the inflaton in natural inflation, while decaying to high-energy particles at energies of 109-1013GeV from the prediction of the inflation. A scalar field responsible for diluting the dark matter abundance revives the natural inflation either with or without the recent data from the Atacama Cosmology Telescope (ACT) and baryon acoustic oscillation results from Dark Energy Spectroscopic Instrument.Since the dark matter must be a spin-zero scalar, we carefully study the galactic dark matter 3-body decay into fermions and two body decays into a gluon pair, and point out relevant multi-messenger bounds that constrain these decay modes. Interestingly, the predicted energy scale may coincide with the AMATERASU event and/or the KM3NeT neutrino event, KM3-230213A. We also point out particle models with dark baryon to further alleviateγ-ray bounds. This scenario yields several testable predictions for the UHECR observations, including the highest-energy neutrons that are unaffected by magnetic fields, the tensor-to-scalar ratio, the running of spectral indices,αs≳ 𝒪(0.001), and the existence of light new colored particles that could be accessible at future collider experiments.Further measurements of high-energy cosmic rays, including their components and detailed directions, may provide insight into not only the origin of the cosmic rays but also inflation.
more »
« less
- PAR ID:
- 10652354
- Publisher / Repository:
- IOP Publishing Ltd and Sissa Medialab
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2025
- Issue:
- 10
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We argue that the striking similarity between the cosmic abundances of baryons and dark matter, despite their very different astrophysical behavior, strongly motivates the scenario in which dark matter resides within a rich dark sector parallel in structure to that of the standard model. The near cosmic coincidence is then explained by an approximateℤ2exchange symmetry between the two sectors, where dark matter consists of stable dark neutrons, with matter and dark matter asymmetries arising via parallel WIMP baryogenesis mechanisms. Taking a top-down perspective, we point out that an adequateℤ2symmetry necessitates solving the electroweak hierarchy problem in each sector, without our committing to a specific implementation. A higher-dimensional realization in the far UV is presented, in which the hierarchical couplings of the two sectors and the requisiteℤ2-breaking structure arise naturally from extra-dimensional localization and gauge symmetries. We trace the cosmic history, paying attention to potential pitfalls not fully considered in previous literature. Residualℤ2-breaking can very plausibly give rise to the asymmetric reheating of the two sectors, needed to keep the cosmological abundance of relativistic dark particles below tight bounds. We show that, despite the need to keep inter-sector couplings highly suppressed after asymmetric reheating, there can naturally be order-one couplings mediated by TeV scale particles which can allow experimental probes of the dark sector at high energy colliders. Massive mediators can also induce dark matter direct detection signals, but likely at or below the neutrino floor.more » « less
-
A<sc>bstract</sc> We study the phenomenology of superheavy decaying dark matter with mass around 1010GeV which can arise in the low-energy limit of string compactifications. Generic features of string theory setups (such as high scale supersymmetry breaking and epochs of early matter domination driven by string moduli) can accommodate superheavy dark matter with the correct relic abundance. In addition, stringy instantons induce tinyR-parity violating couplings which make dark matter unstable with a lifetime well above the age of the Universe. Adopting a model-independent approach, we compute the flux and spectrum of high-energy gamma rays and neutrinos from three-body decays of superheavy dark matter and constrain its mass-lifetime plane with current observations and future experiments. We show that these bounds have only a mild dependence on the exact nature of neutralino dark matter and its decay channels. Applying these constraints to an explicit string model sets an upper bound of$$ \mathcal{O} $$ (0.1) on the string coupling, ensuring that the effective field theory is in the perturbative regime.more » « less
-
Composite asymmetric dark matter (ADM) is the framework that naturally explains the coincidence of the baryon density and the dark matter density of the Universe. Through a portal interaction sharing particle-antiparticle asymmetries in the Standard Model and dark sectors, dark matter particles, which are dark-sector counterparts of baryons, can decay into antineutrinos and dark-sector counterparts of mesons (dark mesons) or dark photon. Subsequent cascade decay of the dark mesons and the dark photon can also provide electromagnetic fluxes at late times of the Universe. The cosmic-ray constraints on the decaying dark matter with the mass of 1–10 GeV has not been well studied. We perform comprehensive studies on the decay of the composite ADM by combining the astrophysical constraints from and ray. The constraints from cosmic-ray positron measurements by AMS-02 are the most stringent at : a lifetime should be larger than the order of , corresponding to the cutoff scale of the portal interaction of about . We also perform the dedicated analysis for the neutrino monoenergetic signals at Super-Kamiokande and Hyper-Kamiokande due to the atmospheric neutrino background in the energy range of our interest.more » « less
-
Abstract The idea of ultralight scalar (axion) dark matter is theoretically appealing and may resolve some small-scale problems of cold dark matter; so it deserves careful attention. In this work we carefully analyze tunneling of the scalar field in dwarf satellites due to the tidal gravitational force from the host halo. The tidal force is far from spherically symmetric; causing tunneling along the axis from the halo center to the dwarf, while confining in the orthogonal plane. We decompose the wave function into a spherical term plus higher harmonics, integrate out angles, and then numerically solve a residual radial Schrödinger-Poisson system. By demanding that the core of the Fornax dwarf halo can survive for at least the age of the universe places a bound on the dark matter particle mass 2 × 10-22eV ≲m≲ 6 × 10-22eV. Interestingly, we show that if another very low density halo is seen, then it rules out the ultralight scalar as core proposal completely. Furthermore, the non-condensed particles likely impose an even sharper lower bound. We also determine how the residual satellites could be distributed as a function of radius.more » « less
An official website of the United States government
