skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 8, 2026

Title: Enhanced Photochemical Reaction Rates with Entangled Photons
Photochemistry is a powerful tool for synthesizing important molecules which are challenging to create without light. We report compelling results which indicate that photochemical reaction rates (oxygenation and cycloaddition) can be notably enhanced by utilizing a very small number of entangled photons. Measurements with the same small number of classical photons show the rate of product formation is considerably lower. This suggests that the reaction rate with entangled photons is enhanced by many orders of magnitude. Theoretical calculations show that classical photons and entangled photons excite the photocatalyst to different final excited states. This chemical synthesis approach with entangled photons could have a large impact on our understanding of chemical reactivity and provide new insights into photochemical processes.  more » « less
Award ID(s):
2347622
PAR ID:
10652681
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
J. Phys. Chem. Lett; American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry Letters
Volume:
16
Issue:
18
ISSN:
1948-7185
Page Range / eLocation ID:
4372 to 4381
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pathway selectivity in quantum spectroscopy with entangled photons is a powerful spectroscopic tool. Phase‐matched signals involving classical light contain contributions from multiple material pathways, whereas quantum spectroscopy may allow the selection of individual pathways. 2D electronic‐vibrational spectroscopy (2DEVS) is a four‐wave mixing technique which employs visible and infrared entangled photons. It is showed how the three contributing pathways—ground state bleach, excited state absorption, and excited state emission—can be separated by photon‐number‐resolved coincidence measurements. Entangled photons thus reveal spectral features not visible in the classical signal, with an enhanced spectral resolution. 
    more » « less
  2. Correlations between entangled photons are a key ingredient for testing fundamental aspects of quantum mechanics and an invaluable resource for quantum technologies. However, scattering from a dynamic medium typically scrambles and averages out such correlations. Here we show that multiply scattered entangled photons reflected from a dynamic complex medium remain partially correlated. In experiments and full-wave simulations we observe enhanced correlations, within an angular range determined by the transport mean free path, which prevail over disorder averaging. Theoretical analysis reveals that this enhancement arises from the interference between scattering trajectories, in which the photons leave the sample and are then virtually reinjected back into it. These paths are the quantum counterpart of the paths that lead to the coherent backscattering of classical light. This work points to opportunities for entanglement transport despite dynamic multiple scattering in complex systems. 
    more » « less
  3. Multiphoton absorption of entangled photons offers ways for obtaining unique information about chemical and biological processes. Measurements with entangled photons may enable sensing biological signatures with high selectivity and at very low light levels to protect against photodamage. In this paper, we present a theoretical and experimental study of the excitation wavelength dependence of the entangled two-photon absorption (ETPA) process in a molecular system, which provides insights into how entanglement affects molecular spectra. We demonstrate that the ETPA excitation spectrum can be different from that of classical TPA as well as that for one-photon resonant absorption (OPA) with photons of doubled frequency. These results are modeled by assuming the ETPA cross-section is governed by a two-photon excited state radiative linewidth rather than by electron-phonon interactions, and this leads to excitation spectra that match the observed results. Further, we find that the two-photon-allowed states with highest TPA and ETPA intensities have high electronic entanglements, with ETPA especially favoring states with the longest radiative lifetimes. These results provide concepts for the development of quantum light–based spectroscopy and microscopy that will lead to much higher efficiency of ETPA sensors and low-intensity detection schemes. 
    more » « less
  4. Abstract Superradiance occurs in quantum optics when the emission rate of photons from multiple atoms is enhanced by inter-atom interactions. When the distance between two atoms is comparable to the emission wavelength, the atoms become entangled and their emission rate varies sinusoidally with their separation distance due to quantum interference. We here explore a theoretical model of pilot-wave hydrodynamics, wherein droplets self-propel on the surface of a vibrating bath. When a droplet is confined to a pair of hydrodynamic cavities between which it may transition unpredictably, in certain instances the system constitutes a two-level system with well-defined ground and excited states. When two such two-level systems are coupled through an intervening cavity, the probability of transition between states may be enhanced or diminished owing to the wave-mediated influence of its neighbour. Moreover, the tunneling probability varies sinusoidally with the coupling-cavity length. We thus establish a classical analog of quantum superradiance. 
    more » « less
  5. The generation, manipulation and quantification of non-classical light, such as quantum-entangled photon pairs, differs significantly from methods with classical light. Thus, quantum measures could be harnessed to give new information about the interaction of light with matter. In this study we investigate if quantum entanglement can be used to diagnose disease. In particular, we test whether brain tissue from subjects suffering from Alzheimer’s disease can be distinguished from healthy tissue. We find that this is indeed the case. Polarization-entangled photons traveling through brain tissue lose their entanglement via a decohering scattering interaction that gradually renders the light in a maximally mixed state. We found that in thin tissue samples (between 120 and 600 micrometers) photons decohere to a distinguishable lesser degree in samples with Alzheimer’s disease than in healthy-control ones. Thus, it seems feasible that quantum measures of entangled photons could be used as a means to identify brain samples with the neurodegenerative disease. 
    more » « less