skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics
Medical robotics has revolutionized healthcare by enhancing precision, adaptability, and clinical outcomes. This field has further evolved with the advent of human–machine interfaces (HMIs), which facilitate seamless interactions between users and robotic systems. However, traditional HMIs rely on rigid sensing components and bulky wiring, causing mechanical mismatches that limit user comfort, accuracy, and wearability. Flexible sensors offer a transformative solution by enabling the integration of adaptable sensing technology into HMIs, enhancing overall system functionality. Further integrating artificial intelligence (AI) into these systems addresses key limitations of conventional HMI, including challenges in complex data interpretations and multimodal sensing integration. In this review, we systematically explore the convergence of flexible sensor‐based HMIs and AI for medical robotics. Specifically, we analyze core flexible sensing mechanisms, AI‐driven advancements in healthcare, and applications in prosthetics, exoskeletons, and surgical robotics. By bridging the gap between flexible sensing technologies and AI‐driven intelligence, this review presents a roadmap for developing next‐generation smart medical robotic systems, advancing personalized healthcare and adaptive human–robot interactions.  more » « less
Award ID(s):
2106459
PAR ID:
10652742
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Robotics Research
ISSN:
2943-9973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zaza, Gianluca; Gallo, Crescenzio (Ed.)
    (1) Background: With technological advancements, the integration of wireless sensing and artificial intelligence (AI) has significant potential for real-time monitoring and intervention. Wireless sensing devices have been applied to various medical areas for early diagnosis, monitoring, and treatment response. This review focuses on the latest advancements in wireless, AI-incorporated methods applied to clinical medicine. (2) Methods: We conducted a comprehensive search in PubMed, IEEEXplore, Embase, and Scopus for articles that describe AI-incorporated wireless sensing devices for clinical applications. We analyzed the strengths and limitations within their respective medical domains, highlighting the value of wireless sensing in precision medicine, and synthesized the literature to provide areas for future work. (3) Results: We identified 10,691 articles and selected 34 that met our inclusion criteria, focusing on real-world validation of wireless sensing. The findings indicate that these technologies demonstrate significant potential in improving diagnosis, treatment monitoring, and disease prevention. Notably, the use of acoustic signals, channel state information, and radar emerged as leading techniques, showing promising results in detecting physiological changes without invasive procedures. (4) Conclusions: This review highlights the role of wireless sensing in clinical care and suggests a growing trend towards integrating these technologies into routine healthcare, particularly patient monitoring and diagnostic support. 
    more » « less
  2. Mahmoud, Ali B. (Ed.)
    Billions of dollars are being invested into developing medical artificial intelligence (AI) systems and yet public opinion of AI in the medical field seems to be mixed. Although high expectations for the future of medical AI do exist in the American public, anxiety and uncertainty about what it can do and how it works is widespread. Continuing evaluation of public opinion on AI in healthcare is necessary to ensure alignment between patient attitudes and the technologies adopted. We conducted a representative-sample survey (total N = 203) to measure the trust of the American public towards medical AI. Primarily, we contrasted preferences for AI and human professionals to be medical decision-makers. Additionally, we measured expectations for the impact and use of medical AI in the future. We present four noteworthy results: (1) The general public strongly prefers human medical professionals make medical decisions, while at the same time believing they are more likely to make culturally biased decisions than AI. (2) The general public is more comfortable with a human reading their medical records than an AI, both now and “100 years from now.” (3) The general public is nearly evenly split between those who would trust their own doctor to use AI and those who would not. (4) Respondents expect AI will improve medical treatment but more so in the distant future than immediately. 
    more » « less
  3. null (Ed.)
    Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms. 
    more » « less
  4. null (Ed.)
    Robot-assisted minimally invasive surgery has made a substantial impact in operating rooms over the past few decades with their high dexterity, small tool size, and impact on adoption of minimally invasive techniques. In recent years, intelligence and different levels of surgical robot autonomy have emerged thanks to the medical robotics endeavors at numerous academic institutions and leading surgical robot companies. To accelerate interaction within the research community and prevent repeated development, we propose the Collaborative Robotics Toolkit (CRTK), a common API for the RAVEN-II and da Vinci Research Kit (dVRK) - two open surgical robot platforms installed at more than 40 institutions worldwide. CRTK has broadened to include other robots and devices, including simulated robotic systems and industrial robots. This common API is a community software infrastructure for research and education in cutting edge human-robot collaborative areas such as semi-autonomous teleoperation and medical robotics. This paper presents the concepts, design details and the integration of CRTK with physical robot systems and simulation platforms. 
    more » « less
  5. Nasr, Nabil (Ed.)
    Over the past decade, robots have emerged as a new sorting technology for material recovery facilities (MRFs), enabled through dramatic advances in robotics and artificial intelligence (AI). These advances allow robots to become ‘smart’ by coupling them with AI driven vision systems, able to distinguish recyclables by material type. By integrating robotics, MRFs hope to increase sorting speed and accuracy, reduce their residuals, and to become more resilient towards worker shortages. To better understand the economic implications, this study presents a techno-economic analysis of a representative MRF in the U.S. that integrates robotics and compare it to a similar MRF without robotics integration. We compare the metrics net present value, discounted internal rate of return, and payback period for a mid-size MRF with and without robotic integration and add an uncertainty analysis to inform about the most important factors to consider. The results of the techno-economic analysis can inform MRF operators in their future decision-making. 
    more » « less