skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Enhanced Wind Energy Forecasting Using an Extended Long Short-Term Memory Model
This paper presents an innovative approach to wind energy forecasting through the implementation of an extended long short-term memory (xLSTM) model. This research addresses fundamental limitations in time-sequence forecasting for wind energy by introducing architectural enhancements to traditional LSTM networks. The xLSTM model incorporates two key innovations: exponential gating with memory mixing and a novel matrix memory structure. These improvements are realized through two variants, i.e., scalar LSTM and matrix LSTM, which are integrated into residual blocks to form comprehensive architectures. The xLSTM model was validated using SCADA data from wind turbines, with rigorous preprocessing to remove anomalous measurements. Performance evaluation across different wind speed regimes demonstrated robust predictive capabilities, with the xLSTM model achieving an overall coefficient of determination value of 0.923 and a mean absolute percentage error of 8.47%. Seasonal analysis revealed consistent prediction accuracy across varied meteorological patterns. The xLSTM model maintains linear computational complexity with respect to sequence length while offering enhanced capabilities in memory retention, state tracking, and long-range dependency modeling. These results demonstrate the potential of xLSTM for improving wind power forecasting accuracy, which is crucial for optimizing turbine operations and grid integration of renewable energy resources.  more » « less
Award ID(s):
2429540
PAR ID:
10652862
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Algorithms
Volume:
18
Issue:
4
ISSN:
1999-4893
Page Range / eLocation ID:
206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The transition to carbon-neutral energy has increased the reliance upon renewable sources of energy, e.g., wind power, placing added demands on resilience and stability of the power grid. Wind-to-hydrogen production systems can be a solution for addressing these demands. By converting excess wind energy into hydrogen via electrolysis, these systems can effectively store the intermittent energy generated by wind turbines. This study discusses the application of two time-series prediction models, i.e., long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), in forecasting the energy of wind farms, subsequently used for an assessment of hydrogen production means of a proton exchange membrane (PEM) electrolyzer. Using a dataset comprising wind speed, active power, and wind direction, inputs were normalized, and wind direction was transformed into sine and cosine components to retain circular characteristics. Bi-LSTM demonstrated superior accuracy with lower testing RMSE than LSTM. Integrating wind forecasts with a PEM electrolyzer model, incorporating critical electro-chemical parameters, revealed an optimal efficiency of 63.611% at a membrane thickness of 0.00254 cm and a temperature of 70°C. Bi-LSTM forecasts boosted hydrogen production by 5% to 8% compared to LSTM. 
    more » « less
  2. Power grid operators rely on solar irradiance forecasts to manage uncertainty and variability associated with solar power. Meteorological factors such as cloud cover, wind direction, and wind speed affect irradiance and are associated with a high degree of variability and uncertainty. Statistical models fail to accurately capture the dependence between these factors and irradiance. In this paper, we introduce the idea of applying multivariate Gated Recurrent Units (GRU) to forecast Direct Normal Irradiance (DNI) hourly. The proposed GRU-based forecasting method is evaluated against traditional Long Short-Term Memory (LSTM) using historical irradiance data (i.e., weather variables that include cloud cover, wind direction, and wind speed) to forecast irradiance forecasting over intra-hour and inter-hour intervals. Our evaluation on one of the sites from Measurement and Instrumentation Data Center indicate that both GRU and LSTM improved DNI forecasting performance when evaluated under different conditions. Moreover, including wind direction and wind speed can have substantial improvement in the accuracy of DNI forecasts. Besides, the forecasting model can accurately forecast irradiance values over multiple forecasting horizons. 
    more » « less
  3. This paper presents a practical framework that integrates wind speed forecasting with proton exchange membrane (PEM) electrolyzer design to optimize hydrogen production. Due to wind speed fluctuations, excess electrical energy is sometimes produced and left unused. A wind-to-hydrogen system addresses this challenge by converting surplus energy into storable hydrogen using a PEM electrolyzer. The proposed approach employs a multivariate supervisory control and data acquisition (SCADA) dataset and applies a convolutional neural network with bi-directional long short-term memory (CNN-Bi-LSTM) for multivariate wind speed temporal forecasting, enabling more efficient PEM operations. Compared to standard deep learning models, the CNN-Bi-LSTM architecture reduces the root mean square error by 52.5% and the mean absolute error by 56%, thereby enhancing hydrogen production forecasting. Simulation results show that a membrane thickness of 0.0252 mm and an operating temperature of 70% achieve the highest overall PEM efficiency of 63.611%. This study demonstrates the integration of deep learning-based forecasting with electrochemical modeling and SCADA datasets as a novel approach for wind-to-hydrogen production systems. 
    more » « less
  4. Accurately forecasting well-being may enable people to make desirable behavioral changes that could improve their future well-being. In this paper, we evaluate how well an automated model can forecast the next-day’s well-being (specifically focusing on stress, health, and happiness) from static models (support vector machine and logistic regression) and time-series models (long short-term memory neural network models (LSTM)) using the previous seven days of physiological, mobile phone, and behavioral survey data. We especially examine how using only a portion of the day’s data (e.g. just night-time, or just daytime) influences the forecasting accuracy. The results show that accuracy is improved, across every condition tested, by using an LSTM instead of using static models. We find that daytime-only physiology data from wearable sensors, using an LSTM, can provide an accurate forecast of tomorrow’s well-being using students’ daily life data (stress: 80.4%, health: 86.0%, and happiness: 79.1%), achieving the same accuracy as using data collected from around the clock. These findings are valuable steps toward developing a practical and convenient well-being forecasting system. 
    more » « less
  5. Abstract Electric vehicles (EVs) have emerged as an environmentally friendly alternative to conventional fuel vehicles. Lithium-ion batteries are the major energy source for EVs, but they degrade under dynamic operating conditions. Accurate estimation of battery state of health is important for sustainability as it quantifies battery condition, influences reuse possibilities, and helps alleviate capacity degradation, which finally impacts battery lifespan and energy efficiency. In this paper, a self-attention graph neural network combined with long short-term memory (LSTM) is introduced by focusing on using temporal and spatial dependencies in battery data. The LSTM layer utilizes a sliding window to extract temporal dependencies in the battery health factors. Two different approaches to the graph construction layer are subsequently developed: health factor-based and window-based graphs. Each approach emphasizes the interconnections between individual health factors and exploits temporal features in a deeper way, respectively. The self-attention mechanism is used to compute the adjacent weight matrix, which measures the strength of interactions between nodes in the graph. The impact of the two graph structures on the model performance is discussed. The model accuracy and computational cost of the proposed model are compared with the individual LSTM and gated recurrent unit (GRU) models. 
    more » « less