Accurately forecasting stress may enable people to make behavioral changes that could improve their future health. For example, accurate stress forecasting might inspire people to make changes to their schedule to get more sleep or exercise, in order to reduce excessive stress tomorrow night. In this paper, we examine how accurately the previous N-days of multi-modal data can forecast tomorrow evening’s high/low binary stress levels using long short-term memory neural network models (LSTM), logistic regression (LR), and support vector machines (SVM). Using a total of 2,276 days, with 1,231 overlapping 8-day sequences of data from 142 participants (including physiological signals, mobile phone usage, location, and behavioral surveys), we find the LSTM significantly outperforms LR and SVM with the best results reaching 83.6% using 7 days of prior data. Using time-series models improves the forecasting of stress even when considering only subsets of the multi-modal data set, e.g., using only physiology data. In particular, the LSTM model reaches 81.4% accuracy using only objective and passive data, i.e., not including subjective reports from a daily survey.
more »
« less
Daytime Data and LSTM Can Forecast Tomorrow's Stress, Health, and Happiness
Accurately forecasting well-being may enable people to make desirable behavioral changes that could improve their future well-being. In this paper, we evaluate how well an automated model can forecast the next-day’s well-being (specifically focusing on stress, health, and happiness) from static models (support vector machine and logistic regression) and time-series models (long short-term memory neural network models (LSTM)) using the previous seven days of physiological, mobile phone, and behavioral survey data. We especially examine how using only a portion of the day’s data (e.g. just night-time, or just daytime) influences the forecasting accuracy. The results show that accuracy is improved, across every condition tested, by using an LSTM instead of using static models. We find that daytime-only physiology data from wearable sensors, using an LSTM, can provide an accurate forecast of tomorrow’s well-being using students’ daily life data (stress: 80.4%, health: 86.0%, and happiness: 79.1%), achieving the same accuracy as using data collected from around the clock. These findings are valuable steps toward developing a practical and convenient well-being forecasting system.
more »
« less
- Award ID(s):
- 1840167
- PAR ID:
- 10108776
- Date Published:
- Journal Name:
- 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Shift workers who are essential contributors to our society, face high risks of poor health and wellbeing. To help with their problems, we collected and analyzed physiological and behavioral wearable sensor data from shift working nurses and doctors, as well as their behavioral questionnaire data and their self-reported daily health and wellbeing labels, including alertness, happiness, energy, health, and stress. We found the similarities and differences between the responses of nurses and doctors. According to the differences in self-reported health and wellbeing labels between nurses and doctors, and the correlations among their labels, we proposed a job-role based multitask and multilabel deep learning model, where we modeled physiological and behavioral data for nurses and doctors simultaneously to predict participants’ next day’s multidimensional self-reported health and wellbeing status. Our model showed significantly better performances than baseline models and previous state-of-the-art models in the evaluations of binary/3-class classification and regression prediction tasks. We also found features related to heart rate, sleep, and work shift contributed to shift workers’ health and wellbeing.more » « less
-
Many coastal cities are facing frequent flooding from storm events that are made worse by sea level rise and climate change. The groundwater table level in these low relief coastal cities is an important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables to quickly rise toward the land surface. This decreases available storage which increases runoff, stormwater system loads, and flooding. Groundwater table forecasts, which could help inform the modeling and management of coastal flooding, are generally unavailable. This study explores two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural Networks (RNN), to model and forecast groundwater table response to storm events in the flood prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy, two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created from observed groundwater table, rainfall, and sea level data from 2010–2018 are used to train and test the models. Additionally, a real-time groundwater table forecasting scenario was carried out to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea level as input data. When modeling the groundwater table with observed data, LSTM networks were found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus 0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus 0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the continuous time series data had much higher RMSE values, they were not suitable for predicting the groundwater table in the real-time scenario when using forecast input data. These results demonstrate the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and show they are well suited for creating operational forecasts in real-time. As groundwater table levels increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable part of coastal flood modeling and management.more » « less
-
Phase of flight (POF) prediction estimates the future state of aircraft along planned trajectories, allowing the prediction of potential conflicts as well as optimization of air space, controlled by the Federal Aviation Administration. In this paper, we present a study conducted to develop three different POF forecasting machine learning models and a statistical regression model using four-dimensional GPS and RADAR Track data from 57 flights provided by an En Route Computer System. The investigated machine learning models include Long Short-Term Memory Recurrent Neural Network (LSTM-RNN), Support Vector Machine (SVM), and Neural Ordinary Differential Equations (NODE). These were developed to forecast the horizontal and vertical POF of the current aircraft for the next time step. The results in this study indicate that LSTM-RNN models are more suitable for POF prediction than SVM and statistical regression models, with NODE being a promising model for future trajectory prediction research.more » « less
-
Power grid operators rely on solar irradiance forecasts to manage uncertainty and variability associated with solar power. Meteorological factors such as cloud cover, wind direction, and wind speed affect irradiance and are associated with a high degree of variability and uncertainty. Statistical models fail to accurately capture the dependence between these factors and irradiance. In this paper, we introduce the idea of applying multivariate Gated Recurrent Units (GRU) to forecast Direct Normal Irradiance (DNI) hourly. The proposed GRU-based forecasting method is evaluated against traditional Long Short-Term Memory (LSTM) using historical irradiance data (i.e., weather variables that include cloud cover, wind direction, and wind speed) to forecast irradiance forecasting over intra-hour and inter-hour intervals. Our evaluation on one of the sites from Measurement and Instrumentation Data Center indicate that both GRU and LSTM improved DNI forecasting performance when evaluated under different conditions. Moreover, including wind direction and wind speed can have substantial improvement in the accuracy of DNI forecasts. Besides, the forecasting model can accurately forecast irradiance values over multiple forecasting horizons.more » « less
An official website of the United States government

