A vast majority of research on (U)WBG power modules has been going on to implement nonlinear resistive field grading material on metal-brazed substrates in reducing the electric field that is maximum at triple points (TPs). However, nearly all investigations have been conducted under either DC or 50/60 HZ sinusoidal AC voltages, even though the actual operation of envisioned (U)WBG power modules involves high-frequency square voltages with high slew rates. It has been validated by several studies that fast rise times of square voltages rapidly degrade the breakdown strength of insulation materials, leading to premature failure. Therefore, this paper introduces a nonlinear resistive field grading material or field-dependent conductivity (FDC) layer around the TP and metal edges to evaluate the electric field mitigation under a high frequency and high slew rate square voltage. The modeling and simulation of both coated and uncoated (U)WBG substrates were performed in COMSOL Multiphysics to assess the electric field reduction with the nonlinear FDC layer. The improvement of reduction in electric field under 100 kHz high slew rate square voltage is compared with that of 60 Hz. The results reveal a significant decrease in field stress at the TP, even under square voltages with fast rise times and high frequencies, when applying a nonlinear FDC coating, as opposed to the uncoated substrate. The influence of switching field (Eb) and nonlinearity coefficient (α) of nonlinear FDC layer is studied under 100 kHz square voltage, and it is concluded that α and Eb should be more than 10 and less than 8 kV/mm, respectively to achieve effective performance of resistive field grading material.
more »
« less
This content will become publicly available on August 24, 2026
Comparison of Electric Field Suppression Techniques in (U)WBG Power Modules Under Unipolar and Bipolar Square Voltages at Varying High Frequencies
Most research involving resistive field grading materials or nonlinear field-dependent conductivity (FDC) layers has predominantly concentrated on DC or sinusoidal AC voltages, even though (U)WBG power electronic modules typically operate under high-frequency square wave voltages. To bridge this existing research gap, the present study systematically investigates the efficacy of an FDC coating in alleviating electric field stress when subjected to high-frequency, high-slew-rate square wave voltages. The findings indicate that applying a nonlinear FDC layer significantly reduces electric field stress, even under stringent conditions involving elevated operating frequencies. Furthermore, the influence of the square wave voltage type—the distinction between unipolar and bipolar square waveforms—on electric field stress remains inadequately understood despite substantial progress in breakdown and PD experiments related to these phenomena. Consequently, this study undertakes a comparative analysis of nonlinear FDC layers' performance under unipolar (+27.5 kV) and bipolar (±27.5 kV) square wave voltages. In doing so, this investigation contributes valuable insights into the interplay between high-frequency operation, the polarity of square waveforms, and the efficacy of nonlinear FDC layers in mitigating electric field stress within (U)WBG power module packages.
more »
« less
- Award ID(s):
- 2306093
- PAR ID:
- 10652884
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Location:
- Dallas, TX, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Incorporating nonlinear resistive field grading materials (FGMs) onto metal-brazed substrates has been widely investigated as an efficient electric field reduction strategy at triple points (TPs) within ultrawide bandgap [(U)WBG] power modules. However, most investigations have been carried out using either dc or sinusoidal ac voltages despite actual (U)WBG power modules operating with high-frequency square voltages featuring high-slew rate ( dv/dt ). Thus, this study introduces a field-dependent conductivity (FDC) layer to analyze electric field reduction under high-frequency, high-slew-rate square voltages. Using COMSOL Multiphysics, both coated and uncoated structures were modeled to evaluate electric field reduction. When employing nonlinear FDC coating, the findings demonstrate a notable decrease in field stress, even under square voltages with rapid rise times and high frequencies. However, relying solely on the nonlinear FDC layer may not adequately address the electric field concerns, particularly when factoring in protrusions on metallization layers and reducing layer coverage. In response to this challenge, protrusions at the metal ends are incorporated into a protruding substrate configuration. This entire structure is then coated with a nonlinear FDC layer. The combined impact of the protruding substrate and nonlinear FDC layer effectively reduces the electric field. However, when the rise time is shortened to 75 ns and the frequency is raised to 500 kHz, the electric field stress around TPs exceeds the insulation’s withstand strength. This finding underscores the need for further research into alternative strategies as the prevalent strategies are unable to effectively mitigate electric fields in real-world operating conditions of (U)WBG power modules.more » « less
-
null (Ed.)Our previous studies showed that geometrical techniques including (1) metal layer offset, (2) stacked substrate design and (3) protruding substrate, either individually or combined, cannot solve high electric field issues in high voltage high-density wide bandgap (WBG) power modules. Then, for the first time, we showed that a combination of the aforementioned geometrical methods and the application of a nonlinear field-dependent conductivity (FDC) layer could address the issue. Simulations were done under a 50 Hz sinusoidal AC voltage per IEC 61287-1. However, in practice, the insulation materials of the envisaged WBG power modules will be under square wave voltage pulses with a frequency of up to a few tens of kHz and temperatures up to a few hundred degrees. The relative permittivity and electrical conductivity of aluminum nitride (AlN) ceramic, silicone gel, and nonlinear FDC materials that were assumed to be constant in our previous studies, may be frequency- and temperature-dependent, and their dependency should be considered in the model. This is the case for other papers dealing with electric field calculation within power electronics modules, where the permittivity and AC electrical conductivity of the encapsulant and ceramic substrate materials are assumed at room temperature and for a 50 or 60 Hz AC sinusoidal voltage. Thus, the big question that remains unanswered is whether or not electric field simulations are valid for high temperature and high-frequency conditions. In this paper, this technical gap is addressed where a frequency- and temperature-dependent finite element method (FEM) model of the insulation system envisaged for a 6.5 kV high-density WBG power module will be developed in COMSOL Multiphysics, where a protruding substrate combined with the application of a nonlinear FDC layer is considered to address the high field issue. By using this model, the influence of frequency and temperature on the effectiveness of the proposed electric field reduction method is studied.more » « less
-
The escalating adoption of wide-bandgap (WBG) semiconductor devices in power electronics has led to the generation of high-frequency, high-slew-rate voltage waveforms, which exert significant stress on encapsulating materials such as silicone gel (SG). This study systematically investigates the breakdown performance of SG under DC,60 HzAC, and highfrequency square wave excitations. Breakdown voltage assessments were performed across a frequency range of 10 to 50 kHz for square pulses with 100 ns rise time, revealing a pronounced decline in dielectric strength as frequency increased. Specifically, the breakdown voltage measured under DC conditions, which was 20.6 kV, diminished by 84.9 % when subjected to a square wave excitation at 50 kHz. Furthermore, electric field simulations elucidated the phenomenon of localized field intensification occurring near the needle tip, which corresponded with the identified breakdown locations. The key revelations from this research underscore the limitations inherent in conventional testing methodologies, which fail to adequately characterize the degradation behavior of SG under realistic high-frequency fast-rise square voltage stress conditions.more » « less
-
As power modules based on (U)WBG materials gain attention for their potential to revolutionize high-voltage, high-power density applications, their optimal performance is hindered by current insulation materials. The high electric field stress at triple points (TPs) and encapsulant's diminishing breakdown field strength at high temperatures significantly limit the application of power modules to below 200°C. Therefore, alternative encapsulation materials are essential for hightemperature applications. This paper proposes a novel solution involving replacing standard silicone gel (SG) encapsulant with high-temperature encapsulation composites created by integrating micro- and nano-sized fillers into a silicone elastomer matrix. Additionally, the ceramic structure is redesigned into a mesa configuration, featuring a trench at the base of the metal electrodes. The results from modeling and simulation of COMSOL Multiphysics demonstrate that this combined approach significantly reduces field stress at TPs. Although effective at lower frequencies, further design modifications, such as altering the metalized substrate into a protruding structure, are necessary for optimal electric field mitigation at frequencies above 10 kHz. This research addresses the critical issues of high electric field values at TPs and the limited temperature tolerance of current encapsulation materials, which are challenges exacerbated under high-frequency square pulse operation. By resolving these issues, this work represents a valuable advancement in utilizing highvoltage, high-power density (U)WBG power modules at demanding frequency environments.more » « less
An official website of the United States government
