The current study reports AxA’1-xByB’1-yO3-𝛿 perovskite redox catalysts (RCs) for CO2-splitting and methane partial oxidation (POx) in a cyclic redox scheme. Strontium (Sr) and iron (Fe) were chosen as A and B site elements with A’ being lanthanum (La), samarium (Sm) or yttrium (Y), and B’ being manganese (Mn), or titanium (Ti) to tailor their equilibrium oxygen partial pressures (P_(O_2 ) s) for CO2-splitting and methane partial oxidation. DFT calculations were performed for predictive optimization of the oxide materials whereas experimental investigation confirmed the DFT predicted redox performance. The redox kinetics of the RCs improved significantly by 1 wt.% ruthenium (Ru) impregnation without affecting their redox thermodynamics. Ru impregnated LaFe0.375Mn0.625O3 (A=0, A’=La, B=Fe, and B’=Mn) was the most promising RC in terms of its superior redox performance (CH4/CO2 conversion >90% and CO selectivity~ 95%) at 800oC. Long-term redox testing over Ru impregnated LaFe0.375Mn0.625O3 indicated stable performance during the first 30 cycles following with a ~25% decrease in the activity during the last 70 cycles. Air treatment was effective to reactivate the redox catalyst. Detailed characterizations revealed the underlying mechanism for redox catalyst deactivation and reactivation. This study not only validated a DFT guided mixed oxide design strategy for CO2 utilization but also provides potentially effective approaches to enhance redox kinetics as well as long-term redox catalyst performance.
more »
« less
This content will become publicly available on February 1, 2027
LaFe1-xMnxO3−δ as effective redox catalysts for CO2 splitting and methane partial oxidation in a cyclic redox scheme
The current study reports LaFe1-xMnxO3−δ redox catalysts (RCs) for CO2-splitting and methane partial oxidation (CH4-POx) in a cyclic redox scheme. Lanthanum (La) was chosen as the A-site cation whereas iron (Fe) and manganese (Mn) were chosen as the B-site cations, respectively. La, Fe, and Mn were incorporated into the perovskite structure (LaFe1-xMnxO3−δ) at various Fe/Mn ratios to tailor the equilibrium oxygen partial pressures for CO2-splitting and methane partial oxidation. Compared to the standalone redox pairs of Fe and Mn (i.e., Fe2O3/Fe3O4, Fe3O4/FeO, and Mn2O3/Mn3O4) which, from a thermodynamic standpoint, favor the complete combustion of CH4, the perovskite structured redox catalysts (RCs, i.e., LaFe1-xMnxO3−δ) favored the selective oxidation of CH4 to syngas. In addition, impregnating the RCs with 1 wt% ruthenium (Ru) led to a significant improvement in their redox kinetics without affecting their redox thermodynamics. The Ru-impregnated, perovskite structured RCs (i.e., LaFeO3, LaFe0.625Mn0.375O3, and LaFe0.5Mn0.5O3 ) exhibited excellent redox performance in terms of the syngas yield (92 – 100%) and CO2 conversion (95 - 98%). Long-term redox testing over Ru-impregnated LaFeO3 and LaFe0.5Mn0.5O3 demonstrated relatively stable performance for 100 redox cycles whereas activity loss was observed for LaFe0.625Mn0.375O3, LaFe0.375Mn0.625O3, and LaMnO3 respectively. Among RCs containing both Mn and Fe, LaFe0.5Mn0.5O3 exhibited the best performance, maintaining satisfactory activity over 100 cycles and higher oxygen capacity. XRD and XPS analysis suggest that the ability to regenerate the perovskite phase under a CO2 environment and a near surface A:B site cation ratio close to the perovskite stoichiometry would likely correspond to more stable performance. Additionally, the inclusion of Mn on the B-site enhances the coke resistance of the redox catalyst when compared to undoped LaFeO3.
more »
« less
- PAR ID:
- 10653114
- Publisher / Repository:
- Elsivier
- Date Published:
- Journal Name:
- Catalysis Today
- Volume:
- 462
- Issue:
- C
- ISSN:
- 0920-5861
- Page Range / eLocation ID:
- 115546
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The significant role of perovskite defect chemistry through A-site doping of strontium titanate with lanthanum for CO 2 electrolysis properties is demonstrated. Here we present a dual strategy of A-site deficiency and promoting adsorption/activation by making use of redox active dopants such as Mn/Cr linked to oxygen vacancies to facilitate CO 2 reduction at perovskite titanate cathode surfaces. Solid oxide electrolysers based on oxygen-excess La 0.2 Sr 0.8 Ti 0.9 Mn(Cr) 0.1 O 3+δ , A-site deficient (La 0.2 Sr 0.8 ) 0.9 Ti 0.9 Mn(Cr) 0.1 O 3−δ and undoped La 0.2 Sr 0.8 Ti 1.0 O 3+δ cathodes are evaluated. In situ infrared spectroscopy reveals that the adsorbed and activated CO 2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The double strategy leads to optimal performance being observed after 100 h of high-temperature operation and 3 redox cycles, suggesting a promising cathode material for CO 2 electrolysis.more » « less
-
Catalytic conversion of CH4 to transportable liquid hydrocarbons via partial oxidation is a promising avenue towards efficient utilization of natural gas. Single Fe atoms on N-functionalized graphene (FeN4/GN) have recently been shown to be active for partial CH4 oxidation with H2O2 at room temperature. Here, density functional theory (DFT) calculations combined with mean-field microkinetic modeling (MKM) have been applied to obtain kinetic understanding of partial CH4 oxidation with H2O2 to CH3OH and CH3OOH over FeN4/GN. CH3OH and CH3OOH are found to be minor and major reaction products, respectively, with a selectivity in agreement with reported experimental data. The kinetic modeling reveals two pathways for CH3OH production together with a dominant catalytic cycle for CH3OOH formation. The selectivity is found to be sensitive to the temperature and H2O2 concentration, with the CH3OH selectivity increasing with increasing temperature and decreasing H2O2 concentration. Turnover frequencies of both CH3OH and CH3OOH are found to decrease over time, due to a change in the Fe formal oxidation state from +6 to +4; Fe(+6) is more active, but less stable than Fe(+4). The present work unravels the detailed reaction mechanism for partial oxidation of methane by FeN4/GN, rationalizes experimental observations and provides guidance for efficient room-temperature methane conversion by single-atom Fe-catalysts.more » « less
-
Methane (CH4) oxidation is an important reaction to reduce the greenhouse effect caused by incomplete combustion of CH4. Here, we explored the mechanism of CH4 oxidation catalyzed by CeO2 and Ni-doped CeO2, focusing on the redox properties of these catalyst surfaces, using density functional theory (DFT). We found that the barriers for CH4* activation and H2O* formation are correlated with the surface redox capacity, which is enhanced by Ni doping. Furthermore, the complete reaction mechanism is explored by DFT calculations and microkinetic simulations on bare and Ni-doped CeO2 surfaces. Our calculations suggest that the doping of Ni leads to a much higher overall reactivity, due to a balance between the CH4* activation and H2O* formation steps. These results provide insights into the CH4 oxidation mechanism and the intrinsic relationship between redox properties and the activity of CeO2 surfaces.more » « less
-
In this work, a robust solid oxide electrolysis cell with Sr 2 Fe 1.5 Mo 0.5 O 6−δ –Ce 0.8 Sm 0.2 O 1.9 (SFM–SDC) based electrodes has been utilized to verify the conceptual process of partial oxidation of methane (POM) assisted steam electrolysis, which can produce syngas and hydrogen simultaneously. When the cathode is fed with 74%H 2 –26%H 2 O and operated at 850 °C, the open circuit voltage (OCV), the minimum energy barrier required to overcome the oxygen partial gradient, is remarkably reduced from 0.940 to −0.012 V after changing the feed gas in the anode chamber from air to methane, indicating that the electricity consumption of the steam electrolysis process could be significantly reduced and compensated by the use of low grade thermal energy from external heat sources. It is found that after ruthenium (Ru) impregnation, the electrolysis current density of the electrolyzer is effectively enhanced from −0.54 to −1.06 A cm −2 at 0.6 V and 850 °C, while the electrode polarization resistance under OCV conditions and 850 °C is significantly decreased from 0.516 to 0.367 Ω cm 2 . Long-term durability testing demonstrates that no obvious degradation but a slight improvement is observed for the electrolyzer, which is possibly due to the activation of the SFM–SDC electrode during operation. These results indicate that the robust Ru infiltrated solid oxide electrolyzer is a very promising candidate for POM assisted steam electrolysis applications. Our result will provide insight to improve the electrode catalysts used in POM assisted steam electrolysis.more » « less
An official website of the United States government
