skip to main content


This content will become publicly available on January 1, 2025

Title: Assessing ChatGPT’s Competency in Addressing Interdisciplinary Inquiries on Chatbot Uses in Sports Rehabilitation: Simulation Study
Background

ChatGPT showcases exceptional conversational capabilities and extensive cross-disciplinary knowledge. In addition, it can perform multiple roles in a single chat session. This unique multirole-playing feature positions ChatGPT as a promising tool for exploring interdisciplinary subjects.

Objective

The aim of this study was to evaluate ChatGPT’s competency in addressing interdisciplinary inquiries based on a case study exploring the opportunities and challenges of chatbot uses in sports rehabilitation.

Methods

We developed a model termed PanelGPT to assess ChatGPT’s competency in addressing interdisciplinary topics through simulated panel discussions. Taking chatbot uses in sports rehabilitation as an example of an interdisciplinary topic, we prompted ChatGPT through PanelGPT to role-play a physiotherapist, psychologist, nutritionist, artificial intelligence expert, and athlete in a simulated panel discussion. During the simulation, we posed questions to the panel while ChatGPT acted as both the panelists for responses and the moderator for steering the discussion. We performed the simulation using ChatGPT-4 and evaluated the responses by referring to the literature and our human expertise.

Results

By tackling questions related to chatbot uses in sports rehabilitation with respect to patient education, physiotherapy, physiology, nutrition, and ethical considerations, responses from the ChatGPT-simulated panel discussion reasonably pointed to various benefits such as 24/7 support, personalized advice, automated tracking, and reminders. ChatGPT also correctly emphasized the importance of patient education, and identified challenges such as limited interaction modes, inaccuracies in emotion-related advice, assurance of data privacy and security, transparency in data handling, and fairness in model training. It also stressed that chatbots are to assist as a copilot, not to replace human health care professionals in the rehabilitation process.

Conclusions

ChatGPT exhibits strong competency in addressing interdisciplinary inquiry by simulating multiple experts from complementary backgrounds, with significant implications in assisting medical education.

 
more » « less
Award ID(s):
2125872
PAR ID:
10538705
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
JMIR
Date Published:
Journal Name:
JMIR Medical Education
Volume:
10
ISSN:
2369-3762
Page Range / eLocation ID:
e51157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Chatbots are being piloted to draft responses to patient questions, but patients’ ability to distinguish between provider and chatbot responses and patients’ trust in chatbots’ functions are not well established. Objective This study aimed to assess the feasibility of using ChatGPT (Chat Generative Pre-trained Transformer) or a similar artificial intelligence–based chatbot for patient-provider communication. Methods A survey study was conducted in January 2023. Ten representative, nonadministrative patient-provider interactions were extracted from the electronic health record. Patients’ questions were entered into ChatGPT with a request for the chatbot to respond using approximately the same word count as the human provider’s response. In the survey, each patient question was followed by a provider- or ChatGPT-generated response. Participants were informed that 5 responses were provider generated and 5 were chatbot generated. Participants were asked—and incentivized financially—to correctly identify the response source. Participants were also asked about their trust in chatbots’ functions in patient-provider communication, using a Likert scale from 1-5. Results A US-representative sample of 430 study participants aged 18 and older were recruited on Prolific, a crowdsourcing platform for academic studies. In all, 426 participants filled out the full survey. After removing participants who spent less than 3 minutes on the survey, 392 respondents remained. Overall, 53.3% (209/392) of respondents analyzed were women, and the average age was 47.1 (range 18-91) years. The correct classification of responses ranged between 49% (192/392) to 85.7% (336/392) for different questions. On average, chatbot responses were identified correctly in 65.5% (1284/1960) of the cases, and human provider responses were identified correctly in 65.1% (1276/1960) of the cases. On average, responses toward patients’ trust in chatbots’ functions were weakly positive (mean Likert score 3.4 out of 5), with lower trust as the health-related complexity of the task in the questions increased. Conclusions ChatGPT responses to patient questions were weakly distinguishable from provider responses. Laypeople appear to trust the use of chatbots to answer lower-risk health questions. It is important to continue studying patient-chatbot interaction as chatbots move from administrative to more clinical roles in health care. 
    more » « less
  2. Abstract

    The release of ChatGPT in 2022 has generated extensive speculation about how Artificial Intelligence (AI) will impact the capacity of institutions for higher learning to achieve their central missions of promoting learning and certifying knowledge. Our main questions were whether people could identify AI-generated text and whether factors such as expertise or confidence would predict this ability. The present research provides empirical data to inform these speculations through an assessment given to a convenience sample of 140 college instructors and 145 college students (Study 1) as well as to ChatGPT itself (Study 2). The assessment was administered in an online survey and included an AI Identification Test which presented pairs of essays: In each case, one was written by a college student during an in-class exam and the other was generated by ChatGPT. Analyses with binomial tests and linear modeling suggested that the AI Identification Test was challenging: On average, instructors were able to guess which one was written by ChatGPT only 70% of the time (compared to 60% for students and 63% for ChatGPT). Neither experience with ChatGPT nor content expertise improved performance. Even people who were confident in their abilities struggled with the test. ChatGPT responses reflected much more confidence than human participants despite performing just as poorly. ChatGPT responses on an AI Attitude Assessment measure were similar to those reported by instructors and students except that ChatGPT rated several AI uses more favorably and indicated substantially more optimism about the positive educational benefits of AI. The findings highlight challenges for scholars and practitioners to consider as they navigate the integration of AI in education.

     
    more » « less
  3. Abstract Background

    A robotic rehabilitation gym can be defined as multiple patients training with multiple robots or passive sensorized devices in a group setting. Recent work with such gyms has shown positive rehabilitation outcomes; furthermore, such gyms allow a single therapist to supervise more than one patient, increasing cost-effectiveness. To allow more effective multipatient supervision in future robotic rehabilitation gyms, we propose an automated system that could dynamically assign patients to different robots within a session in order to optimize rehabilitation outcome.

    Methods

    As a first step toward implementing a practical patient-robot assignment system, we present a simplified mathematical model of a robotic rehabilitation gym. Mixed-integer nonlinear programming algorithms are used to find effective assignment and training solutions for multiple evaluation scenarios involving different numbers of patients and robots (5 patients and 5 robots, 6 patients and 5 robots, 5 patients and 7 robots), different training durations (7 or 12 time steps) and different complexity levels (whether different patients have different skill acquisition curves, whether robots have exit times associated with them). In all cases, the goal is to maximize total skill gain across all patients and skills within a session.

    Results

    Analyses of variance across different scenarios show that disjunctive and time-indexed optimization models significantly outperform two baseline schedules: staying on one robot throughout a session and switching robots halfway through a session. The disjunctive model results in higher skill gain than the time-indexed model in the given scenarios, and the optimization duration increases as the number of patients, robots and time steps increases. Additionally, we discuss how different model simplifications (e.g., perfectly known and predictable patient skill level) could be addressed in the future and how such software may eventually be used in practice.

    Conclusions

    Though it involves unrealistically simple scenarios, our study shows that intelligently moving patients between different rehabilitation robots can improve overall skill acquisition in a multi-patient multi-robot environment. While robotic rehabilitation gyms are not yet commonplace in clinical practice, prototypes of them already exist, and our study presents a way to use intelligent decision support to potentially enable more efficient delivery of technologically aided rehabilitation.

     
    more » « less
  4. Background:

    Technology has the potential to prevent patient falls in healthcare settings and to reduce work-related injuries among healthcare providers. However, the usefulness and acceptability of each technology requires careful evaluation. Framed by the Technology Acceptance Model (TAM) and using the Adaptive Robotic Nursing Assistant (ARNA) to assist with patient ambulation, the present study examined the perceived usefulness of robots in patients’ fall prevention with implications for preventing associated work-related injuries among healthcare providers.

    Methods:

    Employing an experimental design, subjects were undergraduate nursing students ( N = 38) and one external subject (not a nursing student) who played the role of the patient. Procedures included subjects ambulating a simulated patient in three ways: (a) following the practice of a nurse assisting a patient to walk with the patient wearing a gait belt; (b) an ARNA-assisted process with the gait belt attached to ARNA; (c) an ARNA-assisted process with a subject walking a patient wearing a harness that is attached to ARNA. Block randomization was used with the following experimental scenarios: Gait Belt (human with a gait belt), “ARNA + Gait Belt” (a robot with a gait belt), and “ARNA + Harness” (a robot with a harness). Descriptive statistics and a multiple regression model were used to analyze the data and compare the outcome described as the Perceived Usefulness (PU) of a robot for patient walking versus a human “nurse assistant” without a robot. The independent variables included the experimental conditions of “Gait Belt,” “ARNA + Gait Belt,” and “ARNA + Harness,” the subject’s age, race, and previous videogame playing experience.

    Findings:

    Results indicated that PU was significantly higher in the Gait Belt + ARNA and Harness + ARNA conditions than in the Gait Belt condition ( p-value <.01 for both variables). In examining potential influencing factors, the effects of race (White, African American, and Asian), age, and previous video-playing experience were not statistically significant ( p-value >.05).

    Discussion:

    Results demonstrated that using robot technology to assist in walking patients was perceived by subjects as more useful in preventing falls than the gait belt. Patient fall prevention also has implications for preventing associated work-related injuries among healthcare providers.

    Implications:

    Understanding the effects of a subject’s perceptions can guide further development of assistive robots in patient care. Robotic engineers and interdisciplinary teams can design robots to accommodate worker characteristics and individual differences to improve worker safety and reduce work injuries.

     
    more » « less
  5. Most physical therapists would agree that physical rehabilitation is difficult to perform remotely. Consequently, the global COVID-19 pandemic has forced many physical therapists and their clients to adapt to telehealth, especially with video conferencing. In this article, we ask: How has telehealth for physical rehabilitation evolved with the global pandemic and what are the largest technological needs, treatment methodologies, and patient barriers? With the increased widespread use of telehealth for physical therapy, we present a qualitative study towards examining the shortcomings of current physical therapy mediums and how to steer future virtual reality technologies to promote remote patient evaluation and rehabilitation. We interviewed 130 physical rehabilitation professionals across the United States through video conferencing during the COVID19 pandemic from July—August 2020. Interviews lasted 30–45 min using a semi-structured template developed from an initial pilot of 20 interviews to examine potential barriers, facilitators, and technological needs. Our findings suggest that physical therapists utilizing existing telehealth solutions have lost their ability to feel their patients’ injuries, easily assess range of motion and strength, and freely move about to examine their movements when using telehealth. This makes it difficult to fully evaluate a patient and many feel that they are more of a “life coach” giving advice to a patient rather than a traditional in-person rehabilitation session. The most common solutions that emerged during the interviews include: immersive technologies which allow physical therapists and clients 1) to remotely walk around each other in 3D, 2) enable evidence-based measures, 3) automate documentation, and 4) provider clinical practice operation through the cloud. We conclude with a discussion on opportunities for immersive virtual reality towards telehealth for physical rehabilitation. 
    more » « less