skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: The Future Driver: Exploring the Safety Challenges of Level 4 Automated Vehicles During Manual Control
Level 4 automated vehicles (AVs) with the operational design domain (ODD) expanding over time are expected to be the future. Although Level 4 AVs do not require driver takeover, human driving will be necessary outside the ODD. While there is a significant amount of research on takeover/disengagement, no prior studies have explored the safety challenges of manual operation of Level 4 AVs. Crash sequence analysis was employed to compare crashes of the AV (during manual control) (AVM) and general driving population, using U.S. data from California Department of Motor Vehicles crash reports and the Crash Report Sampling System (CRSS) dataset, respectively. Clusters of AVM and CRSS crashes were aggregated into nine groups based on crash context. The results suggest that certain crash groups are more challenging for AVM than for CRSS. AVM crashes are vastly less severe than CRSS crashes for all but one crash group that involved right turns. Nearly half of the AVM crashes involving left and right turns were rear-end crashes, while the majority of similar CRSS crashes were side-swipe or angle. The majority of rear-end AVM crashes occur at intersections, while the converse is true for similar CRSS crashes. Intriguingly, in all the AVM rear-end crashes, the lead vehicle was an AV, suggesting hesitation on the part of the safety driver. For AVM, while lane-changing crashes were less frequent, crashes involving parked vehicles were more frequent than for CRSS. The findings indicate the importance of understanding how driver behavior changes with Level 4 AVs, and how driver training might play an important role in the safety of AVs.  more » « less
Award ID(s):
2222541
PAR ID:
10653229
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2679
Issue:
8
ISSN:
0361-1981
Page Range / eLocation ID:
393 to 408
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A. Ghate, K. Krishnaiyer (Ed.)
    Deaths due to road traffic accidents are one of the leading causes of death in the United States. Furthermore, the economic impact of road traffic accidents accounts for about 3% of the United States' annual gross domestic product (GDP). In the past decade, extensive research has focused on autonomous vehicles (AVs). This technology is said to help prevent traffic accidents while promoting road traffic safety. This study aims to investigate the safety performance of AVs and identify the significant risk factors associated with the AV collisions. The study considers more than 200 crashes involving AVs and includes vehicle factors, environmental factors, collision type and crash severity. Multinomial logistic regression was conducted with collision type. The results showed no statistically significant risk factors to crash severity. However, movement preceding to collision contributes significantly to collision type. When both vehicles are moving, there's a higher likelihood of an angled collision, 47% to be exact. The other scenario which demonstrates a high probability of an angled collision is when the AV vehicle is not moving while the other is moving. The highest probability for a rear-end collision to occur is when the AV vehicle is not moving while the other is moving. This scenario makes up 55% of the entire rear-end collisions. As for the second-highest proportion, both vehicles moving, it consists of 42%. The research shall help reduce AV involved collisions and increase driving safety. 
    more » « less
  2. Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon. 
    more » « less
  3. null (Ed.)
    Autonomous Vehicle (AV) technology has the potential to significantly improve driver safety. Unfortunately, driver could be reluctant to ride with AVs due to the lack of trust and acceptance of AV’s driving styles. The present study investigated the impact of driver’s driving style (aggressive/defensive) and the designed driving styles of AVs (aggressive/defensive) on driver’s trust, acceptance, and take-over behavior in fully autonomous vehicles. Thirty-two participants were classified into two groups based on their driving styles using the Aggressive Driving Scale and experienced twelve scenarios in either an aggressive AV or a defensive AV. Results revealed that drivers’ trust, acceptance, and takeover frequency were significantly influenced by the interaction effects between AV’s driving style and driver’s driving style. The findings implied that driver’s individual differences should be considered in the design of AV’s driving styles to enhance driver’s trust and acceptance of AVs and reduce undesired take over behaviors. 
    more » « less
  4. In highly and fully automated vehicles (AV), drivers could divert their attention to non-driving-related activities. Drivers may also take over AVs if they do not trust the way AVs drive in specific driving scenarios. Existing models have been developed to predict drivers’ takeover performance in responding to takeover requests initiated by AVs in semi-AVs. However, few models predicted driver-initiated takeover behavior in highly and fully AVs. The present study develops an attention-based multiple-input Convolutional Neural Network (CNN) to predict drivers’ takeover intention in fully AVs. The results indicated that the developed model successfully predicted takeover intentions of drivers with a precision of 0.982 and an F1-Score of.989, which were found to be substantially higher than other machine learning algorithms. The developed CNN model could be applied in improving the driving algorithms of the AV by considering drivers’ driving styles to reduce drivers’ unnecessary takeover behaviors. 
    more » « less
  5. null (Ed.)
    Problem: Previous research have focused extensively on crashes, however near crashes provide additional data on driver errors leading to critical events as well as evasive maneuvers employed to avoid crashes. The Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study contains extensive data on real world driving and offers a reliable methodology to study near crashes. The current study utilized the SHRP2 database to compare the rate and characteristics associated with near crashes among risky drivers. Methods: A subset from the SHRP2 database consisting of 4,818 near crashes for teen (16–19 yrs), young adult (20–24 yrs), adult (35–54 yrs), and older (70+ yrs) drivers was used. Near crashes were classified into seven incident types: rear-end, road departure, intersection, head-on, side-swipe, pedestrian/cyclist, and animal. Near crash rates, incident type, secondary tasks, and evasive maneuvers were compared across age groups. For rear-end near crashes, near crash severity, max deceleration, and time-to-collision at braking were compared across age. Results: Near crash rates significantly decreased with increasing age (p < 0.05). Young drivers exhibited greater rear-end (p < 0.05) and road departure (p < 0.05) near crashes compared to adult and older drivers. Intersection near crashes were the most common incident type among older drivers. Evasive maneuver type did not significantly vary across age groups. Near crashes exhibited a longer time-to-collision at braking (p < 0.01) compared to crashes. Summary: These data demonstrate increased total near crash rates among young drivers relative to adult and older drivers. Prevalence of specific near crash types also differed across age groups. Timely execution of evasive maneuvers was a distinguishing factor between crashes or near crashes. Practical Applications: These data can be used to develop more targeted driver training programs and help OEMs optimize ADAS to address the most common errors exhibited by risky drivers. 
    more » « less