skip to main content


Title: Modeling Driver Takeover Intention in Automated Vehicles With Attention-Based CNN Algorithm
In highly and fully automated vehicles (AV), drivers could divert their attention to non-driving-related activities. Drivers may also take over AVs if they do not trust the way AVs drive in specific driving scenarios. Existing models have been developed to predict drivers’ takeover performance in responding to takeover requests initiated by AVs in semi-AVs. However, few models predicted driver-initiated takeover behavior in highly and fully AVs. The present study develops an attention-based multiple-input Convolutional Neural Network (CNN) to predict drivers’ takeover intention in fully AVs. The results indicated that the developed model successfully predicted takeover intentions of drivers with a precision of 0.982 and an F1-Score of.989, which were found to be substantially higher than other machine learning algorithms. The developed CNN model could be applied in improving the driving algorithms of the AV by considering drivers’ driving styles to reduce drivers’ unnecessary takeover behaviors.  more » « less
Award ID(s):
1850002
NSF-PAR ID:
10411879
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Volume:
66
Issue:
1
ISSN:
2169-5067
Page Range / eLocation ID:
1607 to 1611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Trust calibration poses a significant challenge in the interaction between drivers and automated vehicles (AVs) in the context of human-automation collaboration. To effectively calibrate trust, it becomes crucial to accurately measure drivers’ trust levels in real time, allowing for timely interventions or adjustments in the automated driving. One viable approach involves employing machine learning models and physiological measures to model the dynamic changes in trust. This study introduces a technique that leverages machine learning models to predict drivers’ real-time dynamic trust in conditional AVs using physiological measurements. We conducted the study in a driving simulator where participants were requested to take over control from automated driving in three conditions that included a control condition, a false alarm condition, and a miss condition. Each condition had eight takeover requests (TORs) in different scenarios. Drivers’ physiological measures were recorded during the experiment, including galvanic skin response (GSR), heart rate (HR) indices, and eye-tracking metrics. Using five machine learning models, we found that eXtreme Gradient Boosting (XGBoost) performed the best and was able to predict drivers’ trust in real time with an f1-score of 89.1% compared to a baseline model of K -nearest neighbor classifier of 84.5%. Our findings provide good implications on how to design an in-vehicle trust monitoring system to calibrate drivers’ trust to facilitate interaction between the driver and the AV in real time. 
    more » « less
  2. This study proposes a novel methodology for modeling driver takeover behavior in conditionally automated vehicles (AVs) when exiting a freeway using deep learning (DL) network architectures. While previous research has focused on modeling takeover time in emergency scenarios, which require quick responses, these models may not be applicable to scheduled, non-time-critical takeovers. In such situations, drivers may employ varying strategies and take longer to resume control of the vehicle when there is no time pressure. To address this problem, a deep learning architecture based on a convolutional neural network (CNN) was implemented to predict drivers’ takeover behaviors in scheduled takeovers. The model was trained on drivers’ driving data and eye gaze with varying time windows, facilitating an analysis of drivers’ takeover decisions to various takeover request designs. The model achieved good performance metrics, with an F1 Score of 0.993, a recall of 0.996, and a precision of 0.991. The application of these models holds substantial potential for refining the design of the human-machine interface, specifically in calibrating the takeover request (ToR) lead time, thereby promoting safe freeway exiting takeovers in conditionally AVs.

     
    more » « less
  3. null (Ed.)
    Autonomous Vehicle (AV) technology has the potential to significantly improve driver safety. Unfortunately, driver could be reluctant to ride with AVs due to the lack of trust and acceptance of AV’s driving styles. The present study investigated the impact of driver’s driving style (aggressive/defensive) and the designed driving styles of AVs (aggressive/defensive) on driver’s trust, acceptance, and take-over behavior in fully autonomous vehicles. Thirty-two participants were classified into two groups based on their driving styles using the Aggressive Driving Scale and experienced twelve scenarios in either an aggressive AV or a defensive AV. Results revealed that drivers’ trust, acceptance, and takeover frequency were significantly influenced by the interaction effects between AV’s driving style and driver’s driving style. The findings implied that driver’s individual differences should be considered in the design of AV’s driving styles to enhance driver’s trust and acceptance of AVs and reduce undesired take over behaviors. 
    more » « less
  4. Objective This study develops a computational model to predict drivers’ response time and understand the underlying cognitive mechanism for freeway exiting takeovers in conditionally automated vehicles (AVs). Background Previous research has modeled drivers’ takeover response time in emergency scenarios that demand a quick response. However, existing models may not be applicable for scheduled, non-time-critical takeovers as drivers take longer to resume control when there is no time pressure. A model of driver response time in non-time-critical takeovers is lacking. Method A computational cognitive model of driver takeover response time is developed based on Queuing Network-Model Human Processor (QN-MHP) architecture. The model quantifies gaze redirection in response to takeover request (ToR), task prioritization, driver situation awareness, and driver trust to address the complexities of drivers' takeover strategies when sufficient time budget exists. Results Experimental data of a preliminary driving simulator study were used to validate the model. The model accounted for 97% of the experimental takeover response time for freeway exiting. Conclusion The current model can successfully predict drivers’ response time for scheduled, non-time-critical freeway exiting takeovers in conditionally AVs. Application This model can be applied to the human-machine interface design with respect to ToR lead time for enhancing safe freeway exiting takeovers in conditionally AVs. It also provides a foundation for future modeling work towards an integrated driver model of freeway exiting takeover performance. 
    more » « less
  5. Self-driving autonomous vehicles (AVs) have recently gained popularity as a research topic. The safety of AVs is exceptionally important as failure in the design of an AV could lead to catastrophic consequences. AV systems are highly heterogeneous with many different and complex components, so it is difficult to perform end-to-end testing. One solution to this dilemma is to evaluate AVs using simulated racing competition. In this thesis, we present a simulated autonomous racing competition, Generalized RAcing Intelligence Competition (GRAIC). To compete in GRAIC, participants need to submit their controller files which are deployed on a racing ego-vehicle on different race tracks. To evaluate the submitted controller, we also developed a testing pipeline, Autonomous System Operations (AutOps). AutOps is an automated, scalable, and fair testing pipeline developed using software engineering techniques such as continuous integration, containerization, and serverless computing. In order to evaluate the submitted controller in non-trivial circumstances, we populate the race tracks with scenarios, which are pre-defined traffic situations commonly seen in the real road. We present a dynamic scenario testing strategy that generates new scenarios based on results of the ego-vehicle passing through previous scenarios. 
    more » « less