Abstract Monitoring wildlife abundance across space and time is an essential task to study their population dynamics and inform effective management. Acoustic recording units are a promising technology for efficiently monitoring bird populations and communities. While current acoustic data models provide information on the presence/absence of individual species, new approaches are needed to monitor population abundance, ideally across large spatio‐temporal regions.We present an integrated modelling framework that combines high‐quality but temporally sparse bird point count survey data with acoustic recordings. Our models account for imperfect detection in both data types and false positive errors in the acoustic data. Using simulations, we compare the accuracy and precision of abundance estimates using differing amounts of acoustic vocalizations obtained from a clustering algorithm, point count data, and a subset of manually validated acoustic vocalizations. We also use our modelling framework in a case study to estimate abundance of the Eastern Wood‐Pewee (Contopus virens) in Vermont, USA.The simulation study reveals that combining acoustic and point count data via an integrated model improves accuracy and precision of abundance estimates compared with models informed by either acoustic or point count data alone. Improved estimates are obtained across a wide range of scenarios, with the largest gains occurring when detection probability for the point count data is low. Combining acoustic data with only a small number of point count surveys yields estimates of abundance without the need for validating any of the identified vocalizations from the acoustic data. Within our case study, the integrated models provided moderate support for a decline of the Eastern Wood‐Pewee in this region.Our integrated modelling approach combines dense acoustic data with few point count surveys to deliver reliable estimates of species abundance without the need for manual identification of acoustic vocalizations or a prohibitively expensive large number of repeated point count surveys. Our proposed approach offers an efficient monitoring alternative for large spatio‐temporal regions when point count data are difficult to obtain or when monitoring is focused on rare species with low detection probability.
more »
« less
This content will become publicly available on December 10, 2026
Aggregating three sources of long‐term trends of swallows and martins to identify priority conservation areas in the Great Lakes region
Abstract Long‐term monitoring of bird populations across scales is important in evaluating conservation targets and creating effective conservation strategies. For nearly six decades, the Breeding Bird Survey (BBS) has served as the primary broad‐scaled source of relative abundance trends of swallows and martins in North America. Recently, however, it has become possible to obtain breeding population trends using semi‐structured eBird community science data. Moreover, weather surveillance radar data of swallow and martin roosting populations yield a third complementary source of trend information.Using results from these three approaches, we propose a novel method of spatially combining estimates of percent change per year into a probability of directional agreement and/or disagreement that describes (1) the direction of the trend within a given region, (2) the amount of evidence associated with the estimate and (3) how much uncertainty surrounds it. We focus our efforts on an area of high Hirundinidae concentration in the North American Great Lakes region and predict trends from 2012 to 2022.We found a high probability of agreement between all three sources about observed declines in swallow and martin trends in the region surrounding Lake Ontario and to the west of Lake Michigan. Focusing future research on these regions could improve our understanding of these declines and help build more targeted conservation initiatives.Synthesis and applications. Our data integration methodology allows managers to identify regions that accumulate evidence of concerning trends across multiple wildlife monitoring schemes. These regions can thus be prioritized in conservation and management efforts. This approach can be generalized to other sources of long‐term monitoring data of different species, at different stages of their annual cycle, in any geographic location.
more »
« less
- Award ID(s):
- 2017554
- PAR ID:
- 10653234
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Applied Ecology
- ISSN:
- 0021-8901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.more » « less
-
Abstract Understanding migratory connectivity, or the linkage of populations between seasons, is critical for effective conservation and management of migratory wildlife. A growing number of tools are available for understanding where migratory individuals and populations occur throughout the annual cycle. Integration of the diverse measures of migratory movements can help elucidate migratory connectivity patterns with methodology that accounts for differences in sampling design, directionality, effort, precision and bias inherent to each data type.The R packageMigConnectivitywas developed to estimate population‐specific connectivity and the range‐wide strength of those connections. New functions allow users to integrate intrinsic markers, tracking and long‐distance reencounter data, collected from the same or different individuals, to estimate population‐specific transition probabilities (estTransition) and the range‐wide strength of those transition probabilities (estStrength). We used simulation and real‐world case studies to explore the challenges and limitations of data integration based on data from three migratory bird species, Painted Bunting (Passerina ciris), Yellow Warbler (Setophaga petechia) and Bald Eagle (Haliaeetus leucocephalus), two of which had bidirectional data.We found data integration is useful for quantifying migratory connectivity, as single data sources are less likely to be available across the species range. Furthermore, accurate strength estimates can be obtained from either breeding‐to‐nonbreeding or nonbreeding‐to‐breeding data. For bidirectional data, integration can lead to more accurate estimates when data are available from all regions in at least one season.The ability to conduct combined analyses that account for the unique limitations and biases of each data type is a promising possibility for overcoming the challenge of range‐wide coverage that has been hard to achieve using single data types. The best‐case scenario for data integration is to have data from all regions, especially if the question is range‐wide or data are bidirectional. Multiple data types on animal movements are becoming increasingly available and integration of these growing datasets will lead to a better understanding of the full annual cycle of migratory animals.more » « less
-
Petrochelidon pyrrhonota (Cliff Swallow) is experiencing significant population declines in parts of its breeding range, particularly in northeastern North America. At 12 active Cliff Swallow colonies in western Massachusetts in 2019–2020, we examined the extent to which installation of artificial nests, providing of mud sources, and control of Passer domesticus (House Sparrow) affected colony size and reproductive success of Cliff Swallows. While there was a trend for colony size to increase at sites with artificial nests, there was not a significant size increase at these sites from 2019–2020. Cliff Swallow nesting success was significantly lower at colony sites where House Sparrows were present, compared to those at which they were absent. The number of nesting Cliff Swallows at 2 sites where mud sources were enhanced increased from 2019 to 2020. Efforts to control House Sparrows by shooting at 1 site were unsuccessful. Our study suggests that without effective control of House Sparrows, Cliff Swallows are likely to keep declining in Massachusetts, regardless of other management techniques used.more » « less
-
Efforts to address declines of North American birds have been constrained by limited availability of fine-scale information about population change. By using participatory science data from eBird, we estimated continental population change and relative abundance at 27-kilometer resolution for 495 bird species from 2007 to 2021. Results revealed high and previously undetected spatial heterogeneity in trends; although 75% of species were declining, 97% of species showed separate areas of significantly increasing and decreasing populations. Populations tended to decline most steeply in strongholds where species were most abundant, yet they fared better where species were least abundant. These high-resolution trends improve our ability to understand population dynamics, prioritize recovery efforts, and guide conservation at a time when action is urgently needed.more » « less
An official website of the United States government
