In subduction zones, along‐strike and downdip variations in megathrust slip behavior are linked to changes in the properties of the subducting and overriding plates. Although marine geophysical methods provide insights into subduction zone structures, most surveys consist of sparse 2D profiles, limiting our understanding of first‐order controls. Here, we use active‐source seismic data to derive a 3D crustal‐scale P‐wave velocity model of the Alaska Peninsula subduction zone that encompasses both plates and spans the Semidi segment and SW Kodiak asperity. Our results reveal modest variations within the incoming plate, attributed to a series of fracture zones, seamounts and their associated basement swell, collectively contributing to plate hydration. Basement swell appears to modulate the distribution and type of sediment entering the trench, likely impacting observed variations in slip behavior. The overriding plate exhibits significant heterogeneity. The updip limit and width of the dynamic backstop are similar between the SW Kodiak asperity and eastern Semidi segment but differ significantly from the Western Semidi segment. These distinctions likely account for differences in earthquake rupture patterns and interseismic coupling among these segments. Additionally, high velocities in the mid‐lower forearc crust coincide with the location of the megathrust slip during the Mw 8.2 2021 Chignik event. We interpret these velocities as intracrustal intrusions that contributed to the deep rupture of the 2021 event. Our findings suggest that the contrasting structural and material properties of both the incoming and overriding plates influence the spatially complex and semi‐persistent segmentation of the megathrust offshore the Alaska Peninsula.
more »
« less
This content will become publicly available on September 10, 2026
Deep-Learning-Based Catalog of Background Seismicity and Aftershocks of the 2020–2021 Large Earthquakes Along the Alaska Peninsula
Abstract The Alaska Peninsula section of the Alaska-Aleutian subduction zone shows significant along-strike variations in seismic activity and interseismic plate coupling. This region experienced the 2020 Mw 7.8 Simeonof megathrust, Mw 7.6 Sand Point strike-slip, and 2021 Mw 8.2 Chignik megathrust earthquakes. This study, utilizing deep learning techniques, presents a high-precision earthquake catalog, providing insights into background seismicity, aftershocks, and slab geometry. An abrupt change in the slab dip angle at 30–40 km depths in the Shumagin segment acted as a barrier to the Simeonof and Sand Point earthquake ruptures. The Simeonof event triggered more aftershocks in the overriding plate than the Chignik event, suggesting the overriding plate is more deformed and hydrated in the Shumagin segment. The Sand Point earthquake triggered numerous aftershocks in the overriding plate, delineating a fault in the overriding plate with similar geometry as the intraslab mainshock fault, but activated around seven days after the mainshock.
more »
« less
- PAR ID:
- 10653496
- Publisher / Repository:
- Seismological Society of America
- Date Published:
- Journal Name:
- Seismological Research Letters
- ISSN:
- 0895-0695
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The July 2021 Chignik earthquake (M8.2) was the biggest earthquake in the US since 1965 (Rat Islands). It ruptured a segment of the megathrust offshore of the Alaska Peninsula, which last ruptured in 1938, although there are some differences. It is also the middle of the recent AACSE project, which deployed 30 PASSCAL Broadbands, 75 OBSs, and 398 Nodes in 2018-8, making it among the best-characterized megathrust segments. This dataset contains the on-shore seismic aftershock survey, where we reoccupy several AACSE sites on the Shumagin Islands, Alaska Peninsula and Kodiak, with one new deployment on the Semidi islands close to the epicenter. Stations are deployed from Kodiak or Chignik. Sites are deployed in early August 2021, within 2 weeks of the mainshock, and continue until May-June 2022 when they are recovered. All sites have compact broadband sensors and are powered by Air-Alkaline Cells, which are relatively winter- and bear-resistant. All data are to be made open as rapidly as possible.more » « less
-
On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems.more » « less
-
Abstract The eastern portion of the Shumagin gap along the Alaska Peninsula ruptured in anMW7.8 thrust earthquake on 22 July 2020. The megathrust fault space‐time slip history is determined by joint inversion of regional and teleseismic waveform data along with co‐seismic static Global Navigation Satellite System (GNSS) displacements. The rupture expanded westward and along‐dip from the hypocenter, located adjacent to the 1938MW8.2 Alaska earthquake, with slip and aftershocks extending into the gap about 180 to 205 km, respectively, at depths from 15 to 40 km. The deeper half of ~75% of the Shumagin gap experienced faulting. However, the patchy slip is significantly less than possible accumulated slip since the region's last major rupture in 1917, compatible with geodetic seismic‐coupling estimates of 10‐40% beneath the Shumagin Islands. The rupture terminated in the western region of very low seismic coupling. There was a regional decade‐scale decrease in b‐value prior to the 2020 event.more » « less
-
Abstract The 22 July 2020 Mw7.8 Simeonof earthquake was a deep megathrust event that ruptured along the Shumagin segment of the Alaska‐Aleutian subduction zone. This earthquake occurred ∼250 km from a seafloor geodetic GNSS‐Acoustic site IVB1, where we observed a velocity of 3.78 ± 1.15 cm/yr with the down‐going slab prior to the earthquake followed by 0.6 ± 0.7 eastward and −15.5 ± 0.8 cm northward coseismic offset. We computed a slip model of the coseismic rupture using the static offset at IVB1 alongside regional continuous GNSS and strong motion stations. The small static horizontal offset at the site precludes significantly shallower rupture than previously inferred from terrestrial observations, confirming that the Simeonof earthquake was a deep megathrust earthquake. The observed site velocity implies partial locking prior to the earthquake, implying significant shallow strain accumulation such that the small coseismic offset is unlikely to have relieved all of the accumulated strain since the last coseismic rupture.more » « less
An official website of the United States government
