skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 16, 2026

Title: Enhancing winter climate simulations of the Great Lakes: Insights from a new coupled lake-ice-atmosphere (CLIAv1) model on the importance of integrating 3D hydrodynamics with a regional climate model
Award ID(s):
2435005
PAR ID:
10653497
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Geoscientific Model Development
Date Published:
Journal Name:
Geoscientific Model Development
ISSN:
1991-9603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Here we investigate the role of the atmospheric circulation in the Atlantic Meridional Overturning Circulation (AMOC) by comparing a fully‐coupled large ensemble, a forced‐ocean simulation, and new experiments using a fully‐coupled global climate model where winds above the boundary layer are nudged toward reanalysis. When winds are nudged north of 45°N, agreement with RAPID array observations of AMOC at 26.5°N improves across several metrics. The phasing of interannual variability is well‐captured due to the response of the local Ekman component in both wind‐nudging and forced‐ocean simulations, however the variance remains underestimated. The mean AMOC strength is substantially reduced relative to the fully‐coupled model large ensemble, which is biased high, due to the impact of winds on surface buoyancy fluxes over the subpolar gyre. Nudging winds toward observations also reduces the 1979–2016 trend in AMOC, suggesting that improvement in the representation of the high‐latitude atmosphere is important for projecting long‐term AMOC changes. 
    more » « less
  2. Abstract The transient climate response (TCR), defined to be the warming in near‐surface air temperature after 70 years of a 1% per year increase in CO2, can be estimated from observed warming over the nineteenth and twentieth centuries. Such analyses yield lower values than TCR estimated from global climate models (GCMs). This disagreement has been used to suggest that GCMs' climate may be too sensitive to increases in CO2. Here we critically evaluate the methodology of the comparison using a large ensemble of a fully coupled GCM simulating the historical period, 1850–2005. We find that TCR estimated from model simulations of the historical period can be much lower than the model's true TCR, replicating the disagreement seen between observations and GCM estimates of TCR. This suggests that the disagreement could be explained entirely by the methodology of the comparison and undercuts the suggestions that GCMs overestimate TCR. 
    more » « less
  3. Abstract Multiple stable equilibria are intrinsic to many complex dynamical systems, and have been identified in a hierarchy of climate models. Motivated by the idea that the Quaternary glacial–interglacial cycles could have resulted from orbitally forced transitions between multiple stable states mediated by internal feedbacks, this study investigates the existence and mechanisms of multiple equilibria in an idealized, energy-conserving atmosphere–ocean–sea ice general circulation model with a fully coupled carbon cycle. Four stable climates are found for identical insolation and global carbon inventory: an ice-free Warm climate, two intermediate climates (Cold and Waterbelt), and a fully ice-covered Snowball climate. A fifth state, a small ice cap state between Warm and Cold, is found to be barely unstable. Using custom radiative kernels and a thorough sampling of the model’s internal variability, three equilibria are investigated through the state dependence of radiative feedback processes. For fast feedbacks, the systematic decrease in surface albedo feedback from Cold to Warm states is offset by a similar increase in longwave water vapor feedback. At longer time scales, the key role of the carbon cycle is a dramatic lengthening of the adjustment time comparable to orbital forcings near the Warm state. The dynamics of the coupled climate–carbon system are thus not well separated in time from orbital forcings, raising interesting possibilities for nonlinear triggers for large climate changes. Significance Statement How do carbon cycle and other physical processes affect the physical and mathematical properties of the climate system? We use a complex climate model coupled with a carbon cycle to simulate the climate evolution under different initial conditions. Four stable climate states are possible, from the Snowball Earth, in which ice covers the whole planet, to the Warm state, an ice-free world. The carbon cycle drives the global climate change at an extremely slower pace after sea ice retreats. Sea ice and water vapor, on the other hand, constitute the major contributing factors that accelerate faster climate change. 
    more » « less
  4. This study examines the impact of changing the lateral diffusion coefficient ARedion the transport of the Antarctic Circumpolar Current (ACC). The lateral diffusion coefficient ARediis poorly constrained, with values ranging across an order of magnitude in climate models. The ACC is difficult to accurately simulate, and there is a large spread in eastward transport in the Southern Ocean (SO) in these models. This paper examines how much of that spread can be attributed to different eddy parameterization coefficients. A coarse-resolution, fully coupled model suite was run with ARedi= 400, 800, 1200, and 2400 m2s−1. Additionally, two simulations were run with two-dimensional representations of the mixing coefficient based on satellite altimetry. Relative to the 400 m2s−1case, the 2400 m2s−1case exhibits 1) an 11% decrease in average wind stress from 50° to 65°S, 2) a 20% decrease in zonally averaged eastward transport in the SO, and 3) a 14% weaker transport through the Drake Passage. The decrease in transport is well explained by changes in the thermal current shear, largely due to increases in ocean density occurring on the northern side of the ACC. In intermediate waters these increases are associated with changes in the formation of intermediate waters in the North Pacific. We hypothesize that the deep increases are associated with changes in the wind stress curl allowing Antarctic Bottom Water to escape and flow northward. 
    more » « less
  5. null (Ed.)