skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 28, 2026

Title: Perfectly Undetectable Reflection and Scaling False Data Injection Attacks via Affine Transformation on Mobile Robot Trajectory Tracking Control
With the increasing integration of cyber-physical systems (CPS) into critical applications, ensuring their resilience against cyberattacks is paramount. A particularly concerning threat is the vulnerability of CPS to deceptive attacks that degrade system performance while remaining undetected. This article investigates perfectly undetectable false data injection attacks (FDIAs) targeting the trajectory tracking control of a nonholonomic mobile robot. The proposed attack method utilizes affine transformations of intercepted signals, exploiting weaknesses inherent in the partially linear dynamic properties and symmetry of the nonlinear plant. The feasibility and potential impact of these attacks are validated through experiments using a Turtlebot 3 platform, highlighting the urgent need for sophisticated detection mechanisms and resilient control strategies to safeguard CPS against such threats. Furthermore, a novel approach for detection of these attacks called the state monitoring signature function (SMSF) is introduced. An example SMSF, a carefully designed function resilient to FDIA, is shown to be able to detect the presence of an FDIA through signatures based on system states.  more » « less
Award ID(s):
2112793
PAR ID:
10653709
Author(s) / Creator(s):
 ;  
Publisher / Repository:
IEEE Transactions on Robotics
Date Published:
Journal Name:
IEEE Transactions on Robotics
Volume:
41
ISSN:
6403 - 6418
Page Range / eLocation ID:
6403 to 6418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This article is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this article, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area. 
    more » « less
  2. Cyber-physical systems (CPS) are required to satisfy safety constraints in various application domains such as robotics, industrial manufacturing systems, and power systems. Faults and cyber attacks have been shown to cause safety violations, which can damage the system and endanger human lives. Resilient architectures have been proposed to ensure safety of CPS under such faults and attacks via methodologies including redundancy and restarting from safe operating conditions. The existing resilient architectures for CPS utilize different mechanisms to guarantee safety, and currently, there is no common framework to compare them. Moreover, the analysis and design undertaken for CPS employing one architecture is not readily extendable to another. In this article, we propose a timing-based framework for CPS employing various resilient architectures and develop a common methodology for safety analysis and computation of control policies and design parameters. Using the insight that the cyber subsystem operates in one out of a finite number of statuses, we first develop a hybrid system model that captures CPS adopting any of these architectures. Based on the hybrid system, we formulate the problem of joint computation of control policies and associated timing parameters for CPS to satisfy a given safety constraint and derive sufficient conditions for the solution. Utilizing the derived conditions, we provide an algorithm to compute control policies and timing parameters relevant to the employed architecture. We also note that our solution can be applied to a wide class of CPS with polynomial dynamics and also allows incorporation of new architectures. We verify our proposed framework by performing a case study on adaptive cruise control of vehicles. 
    more » « less
  3. The digital transformation of power system introduces False Data Injection Attacks (FDIAs) on voltage stability that compromises the operational integrity of power grids. Existing detection mechanisms for FDIAs often fall short as they overlook the complexities of cyberattacks targeting voltage stability and rely on outdated models that do not capture the dynamic interplay between power system operations and potential threats. In response to these gaps, this paper proposes a novel FDIA detection method designed specifically for voltage regulation vulnerabilities, aiming to enhance the voltage stability index. The proposed method utilizes an unsupervised learning framework capable of identifying cyberattacks targeting voltage regulation. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The effectiveness of this approach is validated through comprehensive training and testing on a variety of attack scenarios, demonstrating superior generalization across different conditions. Extensive simulations on the Iberian power system topology, with 486 buses, show that the proposed model achieves more than 93% detection rate. These results highlight the robustness and efficacy of the proposed strategy in strengthening the cyber resilience of power systems against sophisticated FDIA threats on voltage stability. 
    more » « less
  4. Cyber-Physical Systems (CPS) have been increasingly subject to cyber-attacks including code injection attacks. Zero day attacks further exasperate the threat landscape by requiring a shift to defense in depth approaches. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if safety-critical applications such as automobiles are compromised. Moving target defense techniques such as instruction set randomization (ISR) have been commonly proposed to address these types of attacks. However, under current implementations an attack can result in system crashing which is unacceptable in CPS. As such, CPS necessitate proper control reconfiguration mechanisms to prevent a loss of availability in system operation. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating ISR, detection, and recovery capabilities that ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection attacks and reconfiguring the controller in real-time. The developed framework is demonstrated with an autonomous vehicle case study. 
    more » « less
  5. Cyber Physical Systems (CPS) consist of integration of cyber and physical spaces through computing, communication, and control operations. In vehicular CPS, modern vehicles with multiple Electronic Control Units (ECUs) and networking with other vehicles help autonomous driving. Vehicular CPS is vulner-able to multitude of cyber attacks, including false data injection attacks. This paper presents an Asynchronous Federated Learning (AFL) with a Gated Recurrent Unit (GRU) model for identifying False Data Injection (FDI) attacks in a VCPS. The AFL model continuously monitors the network and constructs a digital twin using the data obtained from a VCPS for intrusion detection. The proposed model is evaluated using different evaluation metrics. Numerical results show that the AFL model outperforms other existing models. 
    more » « less