skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: A multi-scale evolutionary study of molecular gas in STARFORGE: I. Synthetic observations of SEDIGISM-like molecular clouds
Molecular clouds (MCs) are active sites of star formation in galaxies, and their formation and evolution are largely affected by stellar feedback. This includes outflows and winds from newly formed stars, radiation from young clusters, and supernova explosions. High-resolution molecular line observations allow for the identification of individual star-forming regions and the study of their integrated properties. Moreover, state-of-the-art simulations are now capable of accurately replicating the evolution of MCs, including all key stellar feedback processes. We present13CO(2–1) synthetic observations of the STARFORGE simulations produced using the radiative transfer code RADMC-3D, matching the observational setup of the SEDIGISM survey. From these synthetic observations, we identified the population of MCs using hierarchical clustering and analysed them to provide insights into the interpretation of observed MCs as they evolve. The flux distributions of the post-processed synthetic observations and the properties of the MCs, namely, radius, mass, velocity dispersion, virial parameter, and surface density, are consistent with those of SEDIGISM. Both samples of MCs occupy the same regions in the scaling relation plots; however, the average distributions of MCs at different evolutionary stages do not overlap on the plots. This highlights the reliability of our approach in modelling SEDIGISM and suggests that MCs at different evolutionary stages contribute to the scatter in observed scaling relations. We study the trends in MC properties, morphologies, and fragmentation over time to analyse their physical structure as they form, evolve, and are destroyed. MCs appear as small diffuse cloudlets in early stages, and this is followed by their evolution to filamentary structures before being shaped by stellar feedback into 3D bubbles and getting dispersed. These trends in the observable properties of MCs are consistent with other realisations of simulations and provide strong evidence that clouds exhibit distinct morphologies over the course of their evolution.  more » « less
Award ID(s):
2107942 2107340 2107705
PAR ID:
10653981
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
A&A
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
704
ISSN:
0004-6361
Page Range / eLocation ID:
A38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We present a large suite of MHD simulations of turbulent, star-forming giant molecular clouds (GMCs) with stellar feedback, extending previous work by simulating 10 different random realizations for each point in the parameter space of cloud mass and size. It is found that once the clouds disperse due to stellar feedback, both self-gravitating star clusters and unbound stars generally remain, which arise from the same underlying continuum of substructured stellar density, ie. the hierarchical cluster formation scenario. The fraction of stars that are born within gravitationally-bound star clusters is related to the overall cloud star formation efficiency set by stellar feedback, but has significant scatter due to stochastic variations in the small-scale details of the star-forming gas flow. We use our numerical results to calibrate a model for mapping the bulk properties (mass, size, and metallicity) of self-gravitating GMCs onto the star cluster populations they form, expressed statistically in terms of cloud-level distributions. Synthesizing cluster catalogues from an observed GMC catalogue in M83, we find that this model predicts initial star cluster masses and sizes that are in good agreement with observations, using only standard IMF and stellar evolution models as inputs for feedback. Within our model, the ratio of the strength of gravity to stellar feedback is the key parameter setting the masses of star clusters, and of the various feedback channels direct stellar radiation (photon momentum and photoionization) is the most important on GMC scales. 
    more » « less
  2. Abstract We use hydrodynamical simulations of star-forming gas with stellar feedback and sink particles—proxies for young stellar objects (YSOs)—to produce and analyze synthetic 1.1 mm continuum observations at different distances (150–1000 pc) and ages (0.49–1.27 Myr). We characterize how the inferred core properties, including mass, size, and clustering with respect to diffuse natal gas structure, change with distance, cloud evolution, and the presence of YSOs. We find that atmospheric filtering and core segmentation treatments have distance-dependent impacts on the resulting core properties for d < 300 pc and 500 pc, respectively, which dominate over evolutionary differences. Concentrating on synthetic observations at further distances (650–1000 pc), we find a growing separation between the inferred sizes and masses of cores with and without YSOs in the simulations, which is not seen in recent observations of the Monoceros R2 (Mon R2) cloud at 860 pc. We find that the synthetic cores cluster in smaller groups, and that their mass densities are correlated with gas column density over a much narrower range, than those in the Mon R2 observations. Such differences limit the applicability of the evolutionary predictions we report here, but will motivate our future efforts to adapt our synthetic observation and analysis framework to next generation simulations, such as Star Formation in Gaseous Environments (STARFORGE). These predictions and systematic characterizations will help to guide the analysis of cores on the upcoming TolTEC Clouds to Cores Legacy Survey on the Large Millimeter Telescope Alfonso Serrano. 
    more » « less
  3. ABSTRACT Giant molecular clouds (GMCs) are well studied in the local Universe, however, exactly how their properties vary during galaxy evolution is poorly understood due to challenging resolution requirements, both observational and computational. We present the first time-dependent analysis of GMCs in a Milky Way-like galaxy and an Large Magellanic Cloud (LMC)-like dwarf galaxy of the FIRE-2 (Feedback In Realistic Environments) simulation suite, which have sufficient resolution to predict the bulk properties of GMCs in cosmological galaxy formation self-consistently. We show explicitly that the majority of star formation outside the galactic centre occurs within self-gravitating gas structures that have properties consistent with observed bound GMCs. We find that the typical cloud bulk properties such as mass and surface density do not vary more than a factor of 2 in any systematic way after the first Gyr of cosmic evolution within a given galaxy from its progenitor. While the median properties are constant, the tails of the distributions can briefly undergo drastic changes, which can produce very massive and dense self-gravitating gas clouds. Once the galaxy forms, we identify only two systematic trends in bulk properties over cosmic time: a steady increase in metallicity produced by previous stellar populations and a weak decrease in bulk cloud temperatures. With the exception of metallicity, we find no significant differences in cloud properties between the Milky Way-like and dwarf galaxies. These results have important implications for cosmological star and star cluster formation and put especially strong constraints on theories relating the stellar initial mass function to cloud properties. 
    more » « less
  4. Abstract Measurements of the star formation efficiency (SFE) of giant molecular clouds (GMCs) in the Milky Way generally show a large scatter, which could be intrinsic or observational. We use magnetohydrodynamic simulations of GMCs (including feedback) to forward-model the relationship between the true GMC SFE and observational proxies. We show that individual GMCs trace broad ranges of observed SFE throughout collapse, star formation, and disruption. Low measured SFEs ($${\ll} 1\hbox{ per cent}$$) are ‘real’ but correspond to early stages; the true ‘per-freefall’ SFE where most stars actually form can be much larger. Very high ($${\gg} 10\hbox{ per cent}$$) values are often artificially enhanced by rapid gas dispersal. Simulations including stellar feedback reproduce observed GMC-scale SFEs, but simulations without feedback produce 20× larger SFEs. Radiative feedback dominates among mechanisms simulated. An anticorrelation of SFE with cloud mass is shown to be an observational artefact. We also explore individual dense ‘clumps’ within GMCs and show that (with feedback) their bulk properties agree well with observations. Predicted SFEs within the dense clumps are ∼2× larger than observed, possibly indicating physics other than feedback from massive (main-sequence) stars is needed to regulate their collapse. 
    more » « less
  5. Galaxy quenching, the intricate process through which galaxies transition from active star-forming states to retired ones, remains a complex phenomenon that requires further investigation. This study investigates the role of active galactic nuclei (AGNs) in regulating star formation by analyzing a sample of 643 nearby galaxies with redshifts between 0.005 and 0.03 from the Calar Alto Legacy Integral Field Area (CALIFA) survey. Galaxies were classified according to the Quenching Stages and Nuclear Activity (QueStNA) scheme, which categorizes them based on their quenching stage and the presence of nuclear activity. We further utilized the integrated Extragalactic Database for Galaxy Evolution (iEDGE), which combined homogenized optical integral field unit and CO observations. This allowed us to examine how AGNs influence the molecular gas reservoirs of active galaxies compared to their non-active counterparts at similar evolutionary stages. Our Kolmogorov–Smirnov andχ2tests indicate that the star formation property distributions and scaling relations of AGN hosts are largely consistent with those of non-active galaxies. However, AGN hosts exhibit systematically higher molecular gas masses across all quenching stages except for the quiescent nuclear ring stage. We find that AGN hosts follow the expected trends of non-active quenching galaxies, characterized by a lower star formation efficiency and molecular gas fraction compared to star-forming galaxies. Our results suggest that signatures of instantaneous AGN feedback are not prominent in the global molecular gas and star formation properties of galaxies. 
    more » « less