skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: The EDGE-CALIFA survey: The effect of active galactic nucleus feedback on the integrated properties of galaxies at different stages of their evolution
Galaxy quenching, the intricate process through which galaxies transition from active star-forming states to retired ones, remains a complex phenomenon that requires further investigation. This study investigates the role of active galactic nuclei (AGNs) in regulating star formation by analyzing a sample of 643 nearby galaxies with redshifts between 0.005 and 0.03 from the Calar Alto Legacy Integral Field Area (CALIFA) survey. Galaxies were classified according to the Quenching Stages and Nuclear Activity (QueStNA) scheme, which categorizes them based on their quenching stage and the presence of nuclear activity. We further utilized the integrated Extragalactic Database for Galaxy Evolution (iEDGE), which combined homogenized optical integral field unit and CO observations. This allowed us to examine how AGNs influence the molecular gas reservoirs of active galaxies compared to their non-active counterparts at similar evolutionary stages. Our Kolmogorov–Smirnov andχ2tests indicate that the star formation property distributions and scaling relations of AGN hosts are largely consistent with those of non-active galaxies. However, AGN hosts exhibit systematically higher molecular gas masses across all quenching stages except for the quiescent nuclear ring stage. We find that AGN hosts follow the expected trends of non-active quenching galaxies, characterized by a lower star formation efficiency and molecular gas fraction compared to star-forming galaxies. Our results suggest that signatures of instantaneous AGN feedback are not prominent in the global molecular gas and star formation properties of galaxies.  more » « less
Award ID(s):
2307440 2307441
PAR ID:
10607955
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
697
ISSN:
0004-6361
Page Range / eLocation ID:
A149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.Large-scale environment is one of the main physical drivers of galaxy evolution. The densest regions at high redshifts (i.e.z > 2 protoclusters) are gas-rich regions characterised by high star formation activity. The same physical properties that enhance star formation in protoclusters are also thought to boost the growth of supermassive black holes (SMBHs), most likely in heavily obscured conditions. Aims.We aim to test this scenario by probing the active galactic nucleus (AGN) content of SPT2349–56: a massive, gas-rich, and highly star-forming protocluster core atz = 4.3 discovered as an overdensity of dusty star-forming galaxies (DSFGs). We compare our results with data on the field environment and other protoclusters. Methods.We observed SPT2349–56 withChandra(200 ks) and searched for X-ray emission from the known galaxy members. We also performed a spectral energy distribution fitting procedure to derive the physical properties of the discovered AGNs. Results.In the X-ray band, we detected two protocluster members: C1 and C6, corresponding to an AGN fraction among DSFGs in the structure of ≈10%. This value is consistent with other protoclusters atz  =  2 − 4, but higher than the AGN incidence among DSFGs in the field environment. Both AGNs are heavily obscured sources, hosted in star-forming galaxies with ≈3 × 1010 Mstellar masses. We estimate that the intergalactic medium in the host galaxies contributes to a significant fraction (or even entirely) to the nuclear obscuration. In particular, C1 is a highly luminous (LX = 2 × 1045 erg s−1) and Compton-thick (NH = 2 × 1024 cm−2) AGN, likely powered by aMBH > 6 × 108 MSMBH, assuming Eddington-limited accretion. Its high accretion rate suggests that it is in the phase of efficient growth that is generally required to explain the presence of extremely massive SMBHs in the centres of local galaxy clusters. Considering SPT2349–56 and DRC, a similar protocuster atz = 4, and under different assumptions on their volumes, we find that gas-rich protocluster cores atz ≈ 4 enhance the triggering of luminous (logLX/erg s−1 = 45 − 46) AGNs by three to five orders of magnitude with respect to the predictions from the AGN X-ray luminosity function at a similar redshift in the field environment. We note that this result is not solely driven by the overdensity of the galaxy population in the structures. Conclusions.Our results indicate that gas-rich protoclusters at high redshift boost the growth of SMBHs, which will likely impact the subsequent evolution of the structures. Therefore, they stand as key science targets to obtain a complete understanding of the relation between the environment and galaxy evolution. Dedicated investigations of similar protoclusters are required to definitively confirm this conclusion with a higher statistical significance. 
    more » « less
  2. Abstract To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here. 
    more » « less
  3. null (Ed.)
    ABSTRACT Emission from active galactic nuclei (AGNs) is known to play an important role in the evolution of many galaxies including luminous and ultraluminous systems (U/LIRGs), as well as merging systems. However, the extent, duration, and exact effects of its influence are still imperfectly understood. To assess the impact of AGNs on interacting systems, we present a spectral energy distribution (SED) analysis of a sample of 189 nearby galaxies. We gather and systematically re-reduce archival broad-band imaging mosaics from the ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE, Spitzer, and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes from fine-structure lines that trace star formation and AGN activity. Utilizing the SED modelling and fitting tool cigale, we derive the physical conditions of the interstellar medium, both in star-forming regions and in nuclear regions dominated by the AGN in these galaxies. We investigate how the star formation rates (SFRs) and the fractional AGN contributions (fAGN) depend on stellar mass, galaxy type, and merger stage. We find that luminous galaxies more massive than about $$10^{10} \,\rm {M}_{*}$$ are likely to deviate significantly from the conventional galaxy main-sequence relation. Interestingly, infrared AGN luminosity and stellar mass in this set of objects are much tighter than SFR and stellar mass. We find that buried AGNs may occupy a locus between bright starbursts and pure AGNs in the fAGN–[Ne v]/[Ne ii] plane. We identify a modest correlation between fAGN and mergers in their later stages. 
    more » « less
  4. Abstract Dual quasars—two active supermassive black holes at galactic scales—represent crucial objects for studying the impact of galaxy mergers and quasar activity on the star formation rate (SFR) within their host galaxies, particularly at cosmic noon when SFR peaks. We present JWST/MIRI mid-infrared integral field spectroscopy of J074922.96+225511.7, a dual quasar with a projected separation of 3.8 kpc at a redshiftz= 2.17. We detect spatially extended [Feii] 5.34μm and polycyclic aromatic hydrocarbon (PAH) 3.3μm emissions from the star formation activity in its host galaxy. We derive the SFR of 103.0±0.2Myr−1using PAH 3.3μm, which is 5 times higher than that derived from the knee of the infrared luminosity function for galaxies atz∼ 2. While the SFR of J0749+2255 agrees with that of star-forming galaxies of comparable stellar mass at the same redshifts, its molecular gas content falls short of expectations based on the molecular Kennicutt–Schmidt law. This discrepancy may result from molecular gas depletion due to the longer elevated stage of star formation, even after the molecular gas reservoir is depleted. We do not observe any quasar-driven outflow that impacts PAH and [Feii] in the host galaxy based on the spatially resolved maps. From the expected flux in PAH-based star formation, the [Feii] line likely originates from the star-forming regions in the host galaxy. Our study highlights the extreme stardust nature of J0749+2255, indicating a potential connection between the dual quasar phase and intense star formation activities. 
    more » « less
  5. Abstract We present the CO(1–0) maps of 28 infrared-bright galaxies from the Great Observatories All-Sky Luminous Infrared Galaxy Survey (GOALS) taken with the Combined Array for Research in Millimeter Astronomy (CARMA). We detect 100 GHz continuum in 16 of the 28 CARMA GOALS galaxies, which trace both active galactic nuclei (AGNs) and compact star-forming cores. The GOALS galaxies show a variety of molecular gas morphologies, though in the majority of cases the average velocity fields show a gradient consistent with rotation. We fit the full continuum spectral energy distributions (SEDs) of each of the sources using eithermagphysor SED3FIT (if there are signs of an AGN) to derive the total stellar mass, dust mass, and SFRs of each object. We adopt a value determined from luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) ofαCO= 1.5 0.8 + 1.3 M(K km s−1pc2)−1, which leads to more physical values forfmoland the gas-to-dust ratio. Mergers tend to have the highest gas-to-dust ratios. We assume the cospatiality of the molecular gas and star formation and plot the CARMA GOALS sample on the Schmidt–Kennicutt relation, where we find that they preferentially lie above the line set by normal star-forming galaxies. This hyper-efficiency is likely due to the increased turbulence in these systems, which decreases the freefall time compared to star-forming galaxies, leading to “enhanced” star formation efficiency. Line wings are present in a non-negligible subsample (11/28) of the CARMA GOALS sources and are likely due to outflows driven by AGNs or star formation, gas inflows, or additional decoupled gas components. 
    more » « less