The amount of energy available in a system constrains large-scale patterns of abundance. Here, we test the role of temperature and net primary productivity as drivers of flying insect abundance using a novel continental-scale data source: weather surveillance radar. We use the United States NEXRAD weather radar network to generate a near-daily dataset of insect flight activity across a gradient of temperature and productivity. Insect flight activity was positively correlated with mean annual temperature, explaining 38% of variation across sites. By contrast, net primary productivity did not explain additional variation. Grassland, forest and arid-xeric shrubland biomes differed in their insect flight activity, with the greatest abundance in subtropical and temperate grasslands. The relationship between insect flight abundance and temperature varied across biome types. In arid-xeric shrublands and in forest biomes the temperature–abundance relationship was indirectly (through net primary productivity) or directly (in the form of precipitation) mediated by water availability. These results suggest that temperature constraints on metabolism, development, or flight activity shape macroecological patterns in ectotherm abundance. Assessing the drivers of continental-scale patterns in insect abundance and their variation across biomes is particularly important to predict insect community response to warming conditions. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’.
more »
« less
This content will become publicly available on November 1, 2026
Systematic Continental Scale Monitoring by Weather Surveillance Radar Shows Fewer Insects Above Warming Landscapes in the United States
ABSTRACT Anthropogenic change is predicted to result in widespread declines in insect abundance, but assessing long‐term trends is challenging due to the scarcity of systematically collected time series measurements across large spatial scales. We develop a novel continental‐scale dataset using a nationwide network of radars in the United States to generate a 10‐year time series of daily aerial insect density and assess temporal trends. We do not find evidence of a continental‐scale net decline in insect density over the 10‐year period included in this study; instead we find a mosaic of increasing and declining trends at the landscape scale. This spatial variation in density trends is associated with climatic drivers, where areas with warmer winters experience greater declines in insect density and areas with cooling winter trends see increases in density. Winter warming has a stronger negative effect on density at higher latitudes. After assessing temporal trends, we also use the 10‐year dataset and atmospheric variables to model insect aerial abundance, finding that on a typical summer day approximately a hundred trillion (1014) flying insects are present in the airspace, representing millions of tons of aerial biomass. Our results provide the first continental‐scale quantification of insect density and its response to anthropogenic warming and demonstrate the utility of weather surveillance radar to provide large‐scale monitoring of insect abundance.
more »
« less
- Award ID(s):
- 2017582
- PAR ID:
- 10653983
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 31
- Issue:
- 11
- ISSN:
- 1354-1013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent reports of insect declines have raised concerns about the potential for concomitant losses to ecosystem processes. However, understanding the causes and consequences of insect declines is challenging, especially given the data deficiencies for most species. Needed are approaches that can help quantify the magnitude and potential causes of declines at levels above species. Here we present an analytical framework for assessing broad‐scale plant–insect phenologies and their relationship to community‐level insect abundance patterns. We intentionally apply a species‐neutral approach to analyse trends in phenology and abundance at the macroecological scale. Because both phenology and abundance are critical to ecosystem processes, we estimate aggregate metrics using the overwintering (diapause) stage, a key species trait regulating phenology and environmental sensitivities. This approach can be used across broad spatiotemporal scales and multiple taxa, including less well‐studied groups. Using community (‘citizen’) science butterfly observations from multiple platforms across the Eastern USA, we show that the relationships between environmental drivers, phenology and abundance depend on the diapause stage. In particular, egg‐diapausing butterflies show marked changes in adult‐onset phenology in relation to plant phenology and are rapidly declining in abundance over a 20‐year span across the study region. Our results also demonstrate the negative consequences of warmer winters for the abundance of egg‐diapausing butterflies, irrespective of plant phenology. In sum, the diapause stage strongly shapes both phenological sensitivities and developmental requirements across seasons, providing a basis for predicting the impacts of environmental change across trophic levels. Utilizing a framework that ties thermal performance across life stages in relation to climate and lower‐trophic‐level phenology provides a critical step towards predicting changes in ecosystem processes provided by butterflies and other herbivorous insects into the future.more » « less
-
Abstract Rapid climate warming has contributed to significant changes in Arctic and boreal vegetation over the past half century. Changes in vegetation can impact wildlife by altering habitat and forage availability, which can affect behavior and range use. However, animals can also influence vegetation through foraging and trampling and therefore play an important role in determining ecosystem responses to climate change. As wildlife populations grow, density‐dependent processes can prompt range expansion or shifts. One mechanism for this is density‐dependent forage reduction, which can contribute to nutritional stress and population declines, and can also alter vegetation change trajectories. We assessed the range characteristics of a migratory caribou (Rangifer tarandus) herd in east‐central Alaska and west‐central Yukon Territory as it grew (1992–2017) then declined (2017–2020). Furthermore, we analyzed the correlation between caribou relative spatial density and vegetation change over this period using remotely sensed models of plant functional type cover. Over this period, caribou population density increased in all seasonal ranges. This was most acute in the calving range where density increased 8‐fold, from 1.5 to 12.0 animals km−2. Concurrent with increasing density, we documented range shifts and expansion across summer, post‐calving and winter ranges. In particular, summer range size doubled (12,000 km2increase) and overlap with core range (areas with repeated year‐round use) was halved. Meanwhile, lichen cover, a key forage item, declined more in areas with high caribou density (2.4% absolute, 22% relative decline in cover) compared to areas where caribou were mostly absent (0.3% absolute, 1.9% relative decline). Conversely, deciduous shrub cover increased more in high caribou density areas. However, increases were dominated by less palatable shrubs whereas more palatable shrubs (i.e., willow [Salixspp.]) were stable or declined slightly. These changes in vegetation cover were small relative to uncertainty in the map products used to calculate change. Nonetheless, correlations between vegetation change and caribou range characteristics, along with concerning demographic trends reported over this same period, suggest changing forage conditions may have played a role in the herd's subsequent population decline. Our research highlights the potential of remotely sensed metrics of vegetation change for assessing the impacts of herbivory and trampling and stresses the importance of in situ data such as exclosures for validating such findings.more » « less
-
Abstract. The Southern Ocean is highly under-sampled for the purpose of assessing total carbon uptake and its variability. Since this region dominates the mean global ocean sink for anthropogenic carbon, understanding temporal change is critical. Underway measurements of pCO2 collected as part of the Drake Passage Time-series (DPT) program that began in 2002 inform our understanding of seasonally changing air–sea gradients in pCO2, and by inference the carbon flux in this region. Here, we utilize available pCO2 observations to evaluate how the seasonal cycle, interannual variability, and long-term trends in surface ocean pCO2 in the Drake Passage region compare to that of the broader subpolar Southern Ocean. Our results indicate that the Drake Passage is representative of the broader region in both seasonality and long-term pCO2 trends, as evident through the agreement of timing and amplitude of seasonal cycles as well as trend magnitudes both seasonally and annually. The high temporal density of sampling by the DPT is critical to constraining estimates of the seasonal cycle of surface pCO2 in this region, as winter data remain sparse in areas outside of the Drake Passage. An increase in winter data would aid in reduction of uncertainty levels. On average over the period 2002–2016, data show that carbon uptake has strengthened with annual surface ocean pCO2 trends in the Drake Passage and the broader subpolar Southern Ocean less than the global atmospheric trend. Analysis of spatial correlation shows Drake Passage pCO2 to be representative of pCO2 and its variability up to several hundred kilometers away from the region. We also compare DPT data from 2016 and 2017 to contemporaneous pCO2 estimates from autonomous biogeochemical floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM) so as to highlight the opportunity for evaluating data collected on autonomous observational platforms. Though SOCCOM floats sparsely sample the Drake Passage region for 2016–2017 compared to the Drake Passage Time-series, their pCO2 estimates fall within the range of underway observations given the uncertainty on the estimates. Going forward, continuation of the Drake Passage Time-series will reduce uncertainties in Southern Ocean carbon uptake seasonality, variability, and trends, and provide an invaluable independent dataset for post-deployment assessment of sensors on autonomous floats. Together, these datasets will vastly increase our ability to monitor change in the ocean carbon sink.more » « less
-
Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophylla(chla), is an indicator of ecosystem quality. We analyzed temporal trends in chlafrom the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chlaconcentrations (1968 to 2019). A long-term chladecrease was observed with an average decline in the cumulative annual chlaconcentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chlaconcentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter–spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade−1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.more » « less
An official website of the United States government
