Abstract This study investigates the formation mechanism of the ocean surface warming pattern in response to a doubling CO2with a focus on the role of ocean heat uptake (or ocean surface heat flux change, ΔQnet). We demonstrate that thetransientpatterns of surface warming and rainfall change simulated by the dynamic ocean–atmosphere coupled model (DOM) can be reproduced by theequilibriumsolutions of the slab ocean–atmosphere coupled model (SOM) simulations when forced with the DOM ΔQnetdistribution. The SOM is then used as a diagnostic inverse modeling tool to decompose the CO2-induced thermodynamic warming effect and the ΔQnet(ocean heat uptake)–induced cooling effect. As ΔQnetis largely positive (i.e., downward into the ocean) in the subpolar oceans and weakly negative at the equator, its cooling effect is strongly polar amplified and opposes the CO2warming, reducing the net warming response especially over Antarctica. For the same reason, the ΔQnet-induced cooling effect contributes significantly to the equatorially enhanced warming in all three ocean basins, while the CO2warming effect plays a role in the equatorial warming of the eastern Pacific. The spatially varying component of ΔQnet, although globally averaged to zero, can effectively rectify and lead to decreased global mean surface temperature of a comparable magnitude as the global mean ΔQneteffect under transient climate change. Our study highlights the importance of air–sea interaction in the surface warming pattern formation and the key role of ocean heat uptake pattern.
more »
« less
This content will become publicly available on August 15, 2026
An Observational Estimate of the Pattern Effect on Climate Sensitivity: The Importance of the Eastern Tropical Pacific and Land Areas
Abstract The patterns associated with the top-of-the-atmosphere radiative responseRto surface temperatureTare typically explored through two relationships: 1) the spatially varying radiative response to spatially varying changes in temperature (ΔRi/ΔTi) and 2) the spatially varying radiative response to global-mean changes in temperature (ΔRi/ΔT). Here, we explore the insights provided by an alternative parameter: the global-mean radiative response to changes in spatially varying temperature (ΔR/ΔTi). The pattern ΔR/ΔTiindicates regions where surface temperature covaries withRand thus provides a statistical analog to the causal response functions derived from atmospheric Green’s function experiments. The pattern can be transformed so that it can be globally averaged and thus indicates the local contribution to the global feedback parameter. The transformed version of ΔR/ΔTicorresponds to the pattern in surface temperature whose expansion coefficient time series explains the maximum fraction of the covariance betweenRandTi. It explains roughly the same fraction of internal variability inRas that explained by the Green’s function approach. We focus on the physical insights provided by ΔR/ΔTiwhen it is estimated from regression analyses of monthly mean observations. Consistent with the results of Green’s function experiments, the observational analyses indicate negative contributions to the global internal feedback parameter over the western Pacific and positive contributions over the southeastern tropical Pacific. Unlike the results of such experiments, the analyses indicate notable negative contributions to the global feedback parameter over land areas. When estimated from observations, temperature variability over the land areas accounts for ∼70% of the negative global internal feedback, whereas variability over the southeastern tropical Pacific reduces the global-mean negative internal feedback by ∼10%.
more »
« less
- Award ID(s):
- 2116186
- PAR ID:
- 10654004
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 38
- Issue:
- 16
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 4233 to 4249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Regional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of the sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed.more » « less
-
Abstract Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmospheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice concentrations produce radiative feedbacks that trend toward more negative values, implying low climate sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO2 produce radiative feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future. While this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s preferentially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small global TOA radiation change but large global surface air temperature change, and thus a less-negative global feedback. These results illuminate the importance of determining mechanisms of warm pool warming for understanding how feedbacks have varied historically and will evolve in the future.more » « less
-
null (Ed.)Abstract Using an eastern tropical Pacific pacemaker experiment called the Pacific Ocean–Global Atmosphere (POGA) run, this study investigated the internal variability in sea surface salinity (SSS) and its impacts on the assessment of long-term trends. By constraining the eastern tropical Pacific sea surface temperature variability with observations, the POGA experiment successfully simulated the observed variability of SSS. The long-term trend in POGA SSS shows a general pattern of salty regions becoming saltier (e.g., the northern Atlantic) and fresh regions becoming fresher, which agrees with previous studies. The 1950–2012 long-term trend in SSS is modulated by the internal variability associated with the interdecadal Pacific oscillation (IPO). Due to this variability, there are some regional discrepancies in the SSS 1950–2012 long-term change between POGA and the free-running simulation forced with historical radiative forcing, especially for the western tropical Pacific and southeastern Indian Ocean. Our analysis shows that the tropical Pacific cooling and intensified Walker circulation caused the SSS to increase in the western tropical Pacific and decrease in the southeastern Indian Ocean during the 20-yr period of 1993–2012. This decadal variability has led to large uncertainties in the estimation of radiative-forced trends on a regional scale. For the 63-yr period of 1950–2012, the IPO caused an offset of ~40% in the radiative-forced SSS trend in the western tropical Pacific and ~170% enhancement in the trend in the southeastern Indian Ocean. Understanding and quantifying the contribution of internal variability to SSS trends helps improve the skill for estimates and prediction of salinity/water cycle changes.more » « less
-
Abstract Several mechanisms have been proposed to explain why the isotope ratios of precipitation vary in space and time and why they correlate with other climate variables like temperature and precipitation. Here, we argue that this behavior is best understood through the lens of radiative transfer, which treats the depletion of atmospheric vapor transport by precipitation as analogous to the attenuation of light by absorption or scattering. Building on earlier work by Siler et al., we introduce a simple model that uses the equations of radiative transfer to approximate the two-dimensional pattern of the oxygen isotope composition of precipitation (δp) from monthly mean hydrologic variables. The model accurately simulates the spatial and seasonal variability inδpwithin a state-of-the-art climate model and permits a simple decomposition ofδpvariability into contributions from gradients in evaporation and the length scale of vapor transport. Outside the tropics,δpis mostly controlled by gradients in evaporation, whose dependence on temperature explains the positive correlation betweenδpand temperature (i.e., the temperature effect). At low latitudes,δpis mostly controlled by gradients in the transport length scale, whose inverse relationship with precipitation explains the negative correlation betweenδpand precipitation (i.e., the amount effect). This suggests that the temperature and amount effects are both mostly explained by the variability in upstream rainout, but they reflect distinct mechanisms governing rainout at different latitudes. Significance StatementThe isotopic composition of precipitation has long been used to make inferences about past climates based on its observed relationship with precipitation in the tropics and with temperature at higher latitudes. These relationships—known as the “amount effect” and “temperature effect,” respectively—have been attributed to many different mechanisms, most of which are thought to operate at either high or low latitudes but not both. Here, we present a unified framework for interpreting the isotope variability that can explain the latitude dependence of the temperature and amount effects despite making no distinction between high and low latitudes. Although our results are generally consistent with certain interpretations of the amount effect, they suggest that the temperature effect is widely misunderstood.more » « less
An official website of the United States government
