skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 27, 2026

Title: Monte Carlo Beam Search for Actor-Critic Reinforcement Learning in Continuous Control
Actor-critic methods, like Twin Delayed Deep Deterministic Policy Gradient (TD3), depend on basic noise-based exploration, which can result in less than optimal policy convergence. In this study, we introduce Monte Carlo Beam Search (MCBS), a new hybrid method that combines beam search and Monte Carlo rollouts with TD3 to improve exploration and action selection. MCBS produces several candidate actions around the policy's output and assesses them through short-horizon rollouts, enabling the agent to make better-informed choices. We test MCBS across various continuous-control benchmarks, including HalfCheetah-v4, Walker2d-v5, and Swimmer-v5, showing enhanced sample efficiency and performance compared to standard TD3 and other baseline methods like SAC, PPO, and A2C. Our findings emphasize MCBS's capability to enhance policy learning through structured look-ahead search while ensuring computational efficiency. Additionally, we offer a detailed analysis of crucial hyperparameters, such as beam width and rollout depth, and explore adaptive strategies to optimize MCBS for complex control tasks. Our method shows a higher convergence rate across different environments compared to TD3, SAC, PPO, and A2C. For instance, we achieved 90% of the maximum achievable reward within around 200 thousand timesteps compared to 400 thousand timesteps for the second-best method.  more » « less
Award ID(s):
2204721 2120485 1755984
PAR ID:
10654018
Author(s) / Creator(s):
;
Publisher / Repository:
ACM Ubiquitous Robotics
Date Published:
Format(s):
Medium: X
Location:
College Station, Texas, US
Sponsoring Org:
National Science Foundation
More Like this
  1. I. Farkaˇs et al. (Ed.)
    We propose a new deep deterministic actor-critic algorithm with an integrated network architecture and an integrated objective func- tion. We address stabilization of the learning procedure via a novel adap- tive objective that roughly ensures keeping the actor unchanged while the critic makes large errors. We reduce the number of network parame- ters and propose an improved exploration strategy over bounded action spaces. Moreover, we incorporate some recent advances in deep learn- ing to our algorithm. Experiments illustrate that our algorithm speeds up the learning process and reduces the sample complexity considerably over the state-of-the-art algorithms including TD3, SAC, PPO, and A2C in continuous control tasks. 
    more » « less
  2. The tidal waves of modern electronic/electrical devices have led to increasing demands for ubiquitous application-specific power converters. A conventional manual design procedure of such power converters is computation- and labor-intensive, which involves selecting and connecting component devices, tuning component-wise parameters and control schemes, and iteratively evaluating and optimizing the design. To automate and speed up this design process, we propose an automatic framework that designs custom power converters from design specifications using Monte Carlo Tree Search. Specifically, the framework embraces the upper-confidence-bound-tree (UCT), a variant of Monte Carlo Tree Search, to automate topology space exploration with circuit design specification-encoded reward signals. Moreover, our UCT-based approach can exploit small offline data via the specially designed default policy and can run in parallel to accelerate topology space exploration. Further, it utilizes a hybrid circuit evaluation strategy to substantially reduce design evaluation costs. Empirically, we demonstrated that our framework could generate energy-efficient circuit topologies for various target voltage conversion ratios. Compared to existing automatic topology optimization strategies, the proposed method is much more computationally efficient—the sequential version can generate topologies with the same quality while being up to 67% faster. The parallelization schemes can further achieve high speedups compared to the sequential version. 
    more » « less
  3. The actor-critic RL is widely used in various robotic control tasks. By viewing the actor-critic RL from the perspective of variational inference (VI), the policy network is trained to obtain the approximate posterior of actions given the optimality criteria. However, in practice, the actor-critic RL may yield suboptimal policy estimates due to the amortization gap and insufficient exploration. In this work, inspired by the previous use of Hamiltonian Monte Carlo (HMC) in VI, we propose to integrate the policy network of actor-critic RL with HMC, which is termed as Hamiltonian Policy. As such we propose to evolve actions from the base policy according to HMC, and our proposed method has many benefits. First, HMC can improve the policy distribution to better approximate the posterior and hence reduce the amortization gap. Second, HMC can also guide the exploration more to the regions of action spaces with higher Q values, enhancing the exploration efficiency. Further, instead of directly applying HMC into RL, we propose a new leapfrog operator to simulate the Hamiltonian dynamics. Finally, in safe RL problems, we find that the proposed method can not only improve the achieved return, but also reduce safety constraint violations by discarding potentially unsafe actions. With comprehensive empirical experiments on continuous control baselines, including MuJoCo and PyBullet Roboschool, we show that the proposed approach is a data-efficient and easy-to-implement improvement over previous actor-critic methods. 
    more » « less
  4. Meila, Marina; Zhang, Tong (Ed.)
    Black-box variational inference algorithms use stochastic sampling to analyze diverse statistical models, like those expressed in probabilistic programming languages, without model-specific derivations. While the popular score-function estimator computes unbiased gradient estimates, its variance is often unacceptably large, especially in models with discrete latent variables. We propose a stochastic natural gradient estimator that is as broadly applicable and unbiased, but improves efficiency by exploiting the curvature of the variational bound, and provably reduces variance by marginalizing discrete latent variables. Our marginalized stochastic natural gradients have intriguing connections to classic coordinate ascent variational inference, but allow parallel updates of variational parameters, and provide superior convergence guarantees relative to naive Monte Carlo approximations. We integrate our method with the probabilistic programming language Pyro and evaluate real-world models of documents, images, networks, and crowd-sourcing. Compared to score-function estimators, we require far fewer Monte Carlo samples and consistently convergence orders of magnitude faster. 
    more » « less
  5. Compared with capital improvement projects, real-time control of stormwater systems may be a more effective and efficient approach to address the increasing risk of flooding in urban areas. One way to automate the design process of control policies is through reinforcement learning (RL). Recently, RL methods have been applied to small stormwater systems and have demonstrated better performance over passive systems and simple rule-based strategies. However, it remains unclear how effective RL methods are for larger and more complex systems. Current RL-based control policies also suffer from poor convergence and stability, which may be due to large updates made by the underlying RL algorithm. In this study, we use the Proximal Policy Optimization (PPO) algorithm and develop control policies for a medium-sized stormwater system that can significantly mitigate flooding during large storm events. Our approach demonstrates good convergence behavior and stability, and achieves robust out-of-sample performance. 
    more » « less